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Preface

This thesis is a research monograph. As such, it targets at an audience of experts, primar-
ily in the fields of foundations of computer science and discrete mathematics. Nevertheless,
already several persons showed interest in understanding at least the main theme of this
thesis, but have only little background in mathematics and computer science. This pref-
ace can not serve a bluffer’s guide to the main body of work, but we try at best to explain
at least the central abstractions at an informal level.
The present work deals with mathematical models of computational processes. Several

such models exist, each with its own advantages and characteristics. We will concentrate
on the simplest of these models, namely on finite automata. An example drawn from
everyday life naturally modeled as finite automaton is a vending machine. The observable
behavior of a such a vending machine is described as sequence of atomic events. For
simplicity, let us assume the possible events are: a coin worth one or two units of money is
inserted, in symbols ¶ or ·, a cup of coffee ∪ is requested and brewed, and alternatively
the cancel button © can be hit. Thereafter some coins might be returned, actions for
which we introduce the symbols ¬ or . Now the behavior of a correctly operating
vending machine is described as a set of sequences made up from these symbols. We
expect that most users of the machine will be content with the sequence

¶ · ¬ ∪¶ ¶ ©  · ∪ ,

except possibly for the price of two money units for a cup of coffee. In contrast, the
sequence

· ∪¶ ¶ © © © ¬ © © © © ©

is certainly not expected to be observed on a machine that operates correctly. We thus
model the observable behavior of a vending machine as a set of sequences over some finite
alphabet—in our example, this set will contain infinitely many correct sequences, but it
will not include all possible sequences. The internal behavior can be modeled as a control
unit, which is at each point in time in one of finitely many possible internal states. At
this point, we mention that our vending machine always immediately returns overpaid
amounts. In this way, we can retain a finite number of states. Otherwise it would be
possible to insert arbitrarily large amounts of money before hitting the © button. In
order to guarantee that it always returned the correct amount of money, such a machine
would require a fairly large memory unit in that case.
A mathematically precise model of a finite state control unit, such as the one found

inside the vending machine, is the concept of a finite automaton. The set of sequences
that form the behavior of a finite automaton is then a regular language.1 This model

1In everyday life, we conceive the term language in a much narrower sense. In computer science, the
term is very generously defined: Any set of symbol sequences makes up a (formal) language. There
is not too much of interest to say about such a general concept. Thus we study certain interesting
families of formal languages, such as the family of regular languages.
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draws a clear distinction between the internal realization of the vending machine—the
finite automaton—and its externally observable behavior—a regular language.
An advantage of these notions is that once a prototype is developed, the designer may

eventually want to replace the internal circuitry by an easer or cheaper one. The users
will be content as long as the behavior of the new machine is the same as that of the old
one. One part of this thesis is devoted to the question to what extent such simplifications
can be automatically computed, while consuming only a reasonable amount of memory
and computation time.
The above scenario requires that the desired behavior of the vending machine is specified

in the form of a prototype. There is also a more convenient way to specify the desired
behavior. The behavior can be described by so-called regular expressions. These are a
kind of formula that bear some superficial similarity to arithmetical expressions, or the
formulas from mathematical logic. For mathematically trained persons, such formulas are
often much easier to understand than the complex wiring diagrams of finite automata.
The larger part of this thesis deals with questions regarding regular expressions. One such
question is the following: Assume we already have a vending machine, but the formula
specifying its behavior got lost. The problem is now to reverse-engineer a formula, in the
form of a regular expression, from the wiring diagram of the machine. In order to remain
understandable, the description of the behavior should of course be as short as possible.
From a bird-eye’s perspective, this is similar to the process of translating (say) Latin to
English. But instead of a description in Latin, we have a formal description in the form
of a wiring diagram, and instead of translating it to English for easier understanding, we
want to translate it into a regular expression. In both translation tasks, we will encounter
sentences and constructs for which there is no direct analogue in the target language.
Then we have to think about how to paraphrase these constructs, of course as succinctly
as possible. This thesis aims to provide a deeper understanding about how smoothly this
task can be accomplished.
We will also seize the strength and limitations of regular expressions as a specification

formalism. In the role of a requirements engineer, we often want to combine smaller frag-
ments to specify more complex requirements. Astonishingly, we will find in this thesis
that several very simple mechanisms of assembling more complex units cannot be easily
described in the language of regular expressions—rather often, such combinations of re-
quirements have to be circumscribed in an extremely cumbersome way. In these cases,
practitioners may prefer to use more elaborate formalisms that are more succinct than
regular expressions.
We hope that also non-expert readers could catch a glimpse of the material treated in

this thesis, and the type of questions addressed. For the expert audience, we hope that
this short distraction served as a little canapé that wetted their appetite for the technical
developments to come in the present thesis.

Collaborations
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these contributions. Contributions resulting from joint work with Markus Holzer were
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1 Introduction

Possibly the simplest mathematical model capturing the nature of computation is that of
a finite automaton. Admittedly, virtually every computer scientist has taken some courses
in which she or he learned about this concept. We start with a short historical survey
of the development of the theory of finite automata. Thereafter, we present the main
questions addressed and highlight a few of the obtained results.
In the 1940s and 1950s there were many different lines of research that eventually

ended up in the same concept, namely that of finite automata. We begin with a very
short historical survey of these developments.
Perhaps surprisingly, finite state systems were historically first studied by biologists,

rather than by computer scientists or electrical engineers. In the 1940s, McCulloch and
Pitts suggested a precursor of the concept of finite automata as a mathematical model of
neural activity in nerve nets [139]. A few years later, Kleene [125] introduced a textual
specification formalism, the concept of regular expressions. He proved that the sets of
sequences that can be described by regular expressions are exactly those that can be
described by finite automata. Since that time, this family of languages is known as
the regular languages. The definition of (deterministic) finite automata as we know it
today was shaped only shortly before by Huffman [105, 106] and Moore [145], whose
motivation for studying finite automata was to formalize the behavior of switching circuits.
After Kleene’s invention of regular expressions, Rabin and Scott [157] introduced another
method for describing regular languages, the nondeterministic finite automata. This was
such an outstanding conceptual contribution that they later were given the Turing award
for this work, the most prestigious prize in computer science [7].
Other lines of research that flowed into the early development of the theory of finite

automata came from mathematics, in particular logic and algebra. The dream of hav-
ing a logical calculus for mechanically proving or disproving mathematical statements
dates back to the ideas of Leibniz in the 17th century, and was later formulated precisely
by Hilbert [41]. After Gödel had given a negative answer to Hilbert’s famous Entschei-
dungsproblem in the 1930s, many mathematicians sought for fragments of arithmetic that
were powerful enough to be useful yet weak enough to retain the desirable feature of a
decidable theory. Here, Büchi [24], Elgot [57], and Trakhtenbrot [174] identified a decid-
able fragment of second order logic. As it turns out, this logical theory captures exactly
the regular languages. This means that each formula of that theory can be converted into
an equivalent finite automaton and vice versa. Beside this logical characterization, an
algebraic viewpoint proved useful in charting the fine structure of regular languages. It
known that Kleene’s theorem also allows for an algebraic interpretation in the theory of
semigroups, see e.g. [155]. An early success of this approach was Schützenberger’s The-
orem, which links a basic family of algebras with a basic logical theory: He proved that
the aperiodic monoids are equally expressive as first-order logic with total order [166].
A detailed account on the algebraic approach to understanding aspects of regular lan-
guages is given in [56]. Last but not least, also in the 1950s, Chomsky was seeking for
mathematical models capturing the relevant features of natural language. This led to the
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definition of the Chomsky hierarchy [31, 32], with the family of regular languages at its
lowest level. Notably, although the Chomsky hierarchy was motivated by linguistics, it
turned out to be more influential in the field of computer science, cf. [133]. An extensive
historical survey about these early developments is given by Mahoney [133].
Fueled by these early successes, the theory of automata saw a golden age in the 1960s

and 1970s, and was considered at the time as one of the main interests in theoretical
computer science research, cf. [104, 179]. Inside this theory, finite automata became the
best known models, cf. [22]. Along with the gained maturity, there had been a significant
decrease of interest in research on these topics during the late 1970s. A possible reason
is that after several decades of intensive research in the field, it seemed that almost
everything interesting about regular languages was known, and only the most difficult
problems remained. In a survey appearing in 1980, Brzozowski, one of the pioneers in
automata theory, exemplified this view by listing six problems on finite automata [22]. All
of these were presumably very difficult, since many excellent researchers had tried to solve
them, with little success. Meanwhile, not only that several of these problems have been
solved [45, 91, 169], in recent years there appears to be a renewed interest in the theory
of finite automata, cf. [180]. This observation is corroborated by many interesting new
results on classical questions, see e.g. [13, 86, 101, 118, 162]. The appearance of several
recent listings describing old and new open challenges regarding regular languages [30,
59, 104, 181] gives further evidence for such a new momentum.
An attractive feature of regular languages is that the various different characterizations

can be effectively obtained, in the sense that one can, in principle, convert automatically
between various modes of description e.g. between the abovementioned logical formulas
and finite automata. In the 1950s, when most of these effectiveness results were first
proved, it was unusual to determine the time and memory requirements of such algo-
rithms. Later, along with the growing availability of electronic computers, questions of
efficiency gained importance: at once, such algorithms proved to be powerful tools in solv-
ing real-world problems. Apart from the traditional application domains which marked
the origins of regular languages, the latter concept has found widespread use in many
areas of computing. Notable examples include traditional applications such as lexical
analysis in compiler design [1] and pattern matching in text processing [127]. More re-
cent additions to the list of applications are UML statecharts in software engineering [52],
specifications and query languages in XML data and document processing [130, 135], and
network intrusion detection in internet packet routing [128].

Part of such applications deals with massive datasets, and there is a growing interest in
memory-efficient representations of regular languages, cf. [180]. Such questions were ad-
dressed already since the beginnings of automata theory, see e.g. [132, 157]. A systematic
study of questions of descriptional complexity started in the beginning 1970s, as witnessed
by early papers of Meyer and Fischer [143], and of Maslov [136]. Meyer and Fischer com-
pared different models of description, such as different types of automata and regular
expressions, while Maslov investigated the effect of language manipulations on the re-
quired number of states in deterministic finite automata. Around the same time, the first
computational complexity results regarding representations of regular languages appeared.
Meyer and Stockmeyer showed that increased succinctness of description can render some
problems computationally intractable [144]. For deterministic finite automata, efficient
minimization is possible, and algorithms solving that problem were developed since the
beginning of automata theory [72, 95, 105, 106, 145, 173]. Since it was known that there
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are cases where the smallest deterministic finite automaton is exponentially larger than
the smallest equivalent nondeterministic finite automaton [132], the obvious question was
whether we can have similar algorithms for minimizing nondeterministic finite automata.
Here the result of Stockmeyer and Meyer implies that minimization of nondeterministic
finite automata is computationally hard.
This is of course bad news, and a part of this thesis is devoted to look for ways out.

To illustrate the kind of question we are interested in, a part of this thesis is devoted
to the computational complexity of the minimization problem of nondeterministic finite
automata. Since the problem is hard in the general case, we study special cases on the
one hand and approximate solutions on the other hand. Here we continue a line of re-
search that has been studied by different research groups in the past [70, 112, 114, 144].
We announce the solution of several research challenges that were left open by previous
investigators. We also investigate various other aspects of minimal nondeterministic finite
automata. This includes the comparison of techniques for proving lower bounds, and of
different ways to measure the size of a nondeterministic finite automaton. Examples of our
results include the following: We show that counting the number of states is essentially
different from counting the number of transitions. The minimum number of states can
numerically largely differ from the number of transitions, and sometimes it is impossible to
minimize both measures simultaneously. We also show that minimizing nondeterministic
finite automata is rendered computationally less complex if a finite language is specified
explicitly, as a list of words. This setup appears, for example, in computational linguis-
tics [167]. Still, even this severely restricted problem remains computationally intractable
(NP-hard).
Often we are already content with approximate solutions to such hard problems. In

1993, Jiang and Ravikumar [114] raised the question whether we can obtain an approx-
imate solution in polynomial time, provided the input is specified in a not too succinct
manner. In this direction, Gramlich and Schnitger [70] provided some evidence that even
weak approximations are impossible to obtain efficiently. Yet there were some technical
issues with the result, and these authors posed a few open questions. For instance, they
relied on an unusual cryptographic assumption. Most of these issues are resolved by the
study presented here. We strengthen their results in several directions: First, we give
evidence for hardness of approximation based on the standard assumption, i.e., P 6= NP.
Second, we can show that the problem remains as hard to approximate in the abovemen-
tioned use case appearing in computational linguistics. And finally, in several cases we
obtain quantitative improvements on the bounds of approximability.

While finite automata are ideally suited for manipulation by computers, regular expres-
sions are the preferred choice to be understood and specified by humans, cf. [141]. This
can be explained as follows: just like ordinary arithmetic expressions, regular expressions
have a hierarchical structure, which is often more easily perceived than that of a finite
automaton. Another advantage is that regular expressions are handy to write down as a
formula, thus utilizing only one dimension. In contrast, for finite automata it is even a
nontrivial task to find a layout in two dimensions [20]. Still, there are regular expressions
that are more difficult to understand than others. A potential source of such perceived
complexity is nested application of the Kleene star operator, cf. [141]. This observation led
Eggan to the definition of the star height of regular languages in the beginning 1960s [54].
Indeed, already early investigations showed that limiting access to the star operator gives
rise to a fine-grained hierarchy inside the regular languages [46, 54, 141]. More precisely,
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the languages of star height at most k form a strict subset of the languages of star height
at most k+1, for every integer k. In the decade that followed Eggan’s seminal paper, quite
a few works investigating regular expressions appeared, see e.g. [35, 36, 46, 92, 140, 141].
All of these were devoted to the concept of star height. The large interest in this concept
stemmed from the fact that it was at the time a famous open problem whether the star
height of a regular language is computable. Later, in 1980, this question constituted one
of Brzozowski’s six hard problems mentioned above [22]. The problem was resolved only
after 25 years by Hashiguchi [91], with a rather intricate algorithm, cf. [124]. As a struc-
tural complexity measure, Brzozowski [22] states that the star height is a rather direct
measure of complexity for regular languages.
But the most obvious measure related to the regular expression model is minimum

required regular expression size. For that reason, the present thesis is largely concerned
with this measure. Properties relating to regular expression size were first subject to
systematic study in a paper by Ehrenfeucht and Zeiger in the mid-1970s [55]. In contrast
to Eggan’s paper introducing star height, that paper did not trigger much follow-up work
at the time. It can only be speculated about the reasons for that. One possible reason
for this is that the paper appeared at a time of decreasing interest in automata theory.
But despite the recently regained research interest in this topic, still very little was known
about the descriptional complexity of regular expressions at the time the author started
working on this thesis, cf. [59]. In hindsight, this might be due to the lack of suitable
techniques for proving lower bounds on regular expression size. Part of this thesis is
devoted to the development of tools for proving such lower bounds. At this point, we note
that around the same time Gelade and Neven [65] came up with another, quite different,
lower bound technique. They to provide answers that partly overlap with results presented
in this thesis. One of our tools for establishing lower bounds is based on the insight that if
a regular language has sufficiently complex internal structure, then it requires huge regular
expressions. More technically, we prove an exponential relation between the star height
(structural complexity) and minimum expression size (descriptional complexity) for the
regular languages. In this way, we can harness the rich literature on star height of regular
languages to prove descriptional complexity results. The proof techniques developed in
this thesis have a wealth of consequences. First, they allow us to study the conversion
of finite automata into regular expressions and variations thereof. Second, we can use
them to highlight the dynamic aspects of regular expressions, such as the evolution of
regular expression size under various language operations. Finally, we are able to answer
quite a few open questions regarding regular expressions. This includes not only an open
question raised in the 1970s by Ehrenfeucht and Zeiger but also several research challenges
proposed more recently by Ellul et al. [59].
We mention in particular the following results: The original proof of Kleene’s theorem

readily implies that deterministic finite automata over binary alphabets can be converted
into regular expressions of size O(4n). As observed by Ehrenfeucht and Zeiger [55] in the
1970s, we can do better if the given automaton accepts only finitely many words. There
we get an upper bound of nO(logn) on regular expression size. Regarding lower bounds,
these authors could only show that size at least nΩ(log logn) will be necessary in the worst
case. Consequently, they posed the question of narrowing the gap between the upper and
lower bound. We will present a definite answer to their question, as we are able to raise
the lower bound to give a tight estimate of nΘ(logn) on required size in the worst case.
Our new lower bound already applies for binary alphabets. For the general case of infinite
languages, the classical bound of O(4n) remained the best known until present, cf. [59].
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Almost 50 years after Kleene’s initial discovery, we now devise an improved algorithm,
which even attains a bound of O(1.742n). This is close to optimal, since we also provide a
lower bound of cn, for some constant c > 1. We also undertake first attempts at charting
the borders of tractability in regular expression manipulation.

The present thesis is organized in three main parts; each of these ends with a summary
of the respective technical results. These parts, which constitute the main body of the
thesis, are surrounded by an introductory part and a final part. The introductory part
will now continue with a short recapitulation of the basic definitions, and, at the very
end, the final part discusses possible lines of further research.
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Part V

Outro





16 Conclusion and Further Research

In this thesis, we considered questions regarding how we can deal efficiently with descrip-
tions of regular languages, and where the inherent limitations of the respective mechanism
lie. Although by now some parts of the landscape are charted much more completely
than at the time this research work started, some questions had to remain unresolved.
We shortly recapitulate our main findings and discuss some questions that had to be left
open. Here we highlight only a few outstanding questions, in the hope that these are both
of interest and also specific enough to stimulate further research in these directions in the
near future. A few more questions are found in the respective summaries of each of the
three main parts of the thesis.

The first main theme of the thesis was about minimum nondeterministic finite au-
tomata. We seized the strengths and limitations of known proof techniques for non-
deterministic state complexity and gave a reformulation of these techniques as graph
theoretic concepts. Then we looked at different notions of size of NFAs, namely the
number of states versus the number of transitions. We found that these concepts are
essentially different and the NFA minimization problem has to be studied separately for
these two flavors. Unfortunately, nondeterministic transition complexity is far less un-
derstood. Consequently, classical computational complexity results were found mainly
for state minimization. There we saw that the compactness of the input representation
can largely influence the computational complexity of the NFA minimization problem if
we consider finite languages. Such a phenomenon is known to occur in various computa-
tional settings, see, e.g. [63]. But earlier research on the NFA minimization problem [114]
showed that the problem remains as hard if the input is specified less succinctly for infinite
languages, so we could not expect such a result. Unfortunately, even when restricting to
finite languages and specifying the input in the least succinct way that one may find, NFA
minimization remains NP-hard. There already was evidence that no good approximation
algorithms might exist either [70]. We put this evidence on more solid grounds and proved
rather high limits on approximability of the variants of the problem under consideration.
In this way, we provide a definite (negative) answer to the research question raised in
1993 by Jiang and Ravikumar, and also to most research problems posed more recently
by Gramlich and Schnitger regarding other variants of this problem. What remains open
yet is the quantitative question of determining more precise bounds: In the case where a
unary NFA is given, we already determined the optimal bound under the weakest possi-
ble assumption. But in most of the other cases, still some gaps yawn between the upper
and lower bounds. Perhaps most astonishing is that the question whether unary NFA
minimization is NP-hard for given DFA, posed by Jiang et al. [112] almost twenty years
ago, is still open.
Concerning the descriptional complexity of regular expressions, we obtained many re-

sults, partly with strongly negative algorithmic implications. Undoubtedly, the main
result here is that the star height of a regular language can be at most logarithmic in the
required regular expression size. While this is already a curious result on its own right, the
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counterpositive gives a powerful tool in proving lower bounds on regular expression size.
This power is illustrated by the many tight bounds obtained not only for the conversion
problem but also later, in the third part, on the effect of various language operations. For
the problem of converting finite automata into regular expressions, we could prove a tight
lower bound of 2Θ(n), where n is the number of states. Such a result had been established
by Ehrenfeucht and Zeiger already in the 1970s. Yet the obvious catch in their lower
bound was that they used an alphabet of size n2. We managed to get around this not
only by using a different proof technique, but also by crucially relying on a more recent
concept from graph theory: Note that the existence of expander graphs was proved by
Pinsker only at the time when Ehrenfeucht and Zeiger obtained their results.
Despite of the long list of results obtained by application of the technique based on

star height, it tells us absolutely nothing about finite languages. There we devised a
different technique, based on communication complexity. We related the sizes of regular
expressions and monotone Boolean formulas. This allowed us to transfer results from
computational complexity theory and thereby to resolve an old problem posed by Ehren-
feucht and Zeiger [55] concerning the size of regular expressions equivalent to acyclic finite
automata. The ingredients in lower bound proofs often also hint at potential algorithmic
hooks. This was the case here: We found an improved algorithm for converting DFAs over
alphabets of constant size into regular expressions. This algorithm can be implemented
as a strategy for state elimination. Notably, this algorithm gives the first improvement
over the trivial bound that is known since the early 1960s. While the jump in perfor-
mance from the previous O(4n) to O(1.742n) is already impressive, we feel that both our
analysis and our techniques are far from optimal. A few things that come to mind are
the following. We derived our bound based on the underlying undirected graph at the
beginning of the elimination process. It might be possible to take edge directions and the
dynamics of the elimination process better into account. Devising improved algorithms
may be a challenging but surely rewarding research goal.
The last part of the thesis was devoted to the evolution of required regular expression

size under various language operations. Regular expressions are often used as specification
formalism, notably in the context of data exchange over the internet. Thus it was about
time to answer the most basic questions regarding their dynamic succinctness properties.
Some of these questions were explicitly posed by Ellul et al. [59]. We could provide an
answer to several of these questions, including a tight doubly-exponential bound for the
complement operation. Interestingly, Gelade and Neven worked at the same time along
similar lines but using different techniques [65]. This witnesses that the time was indeed
ripe to settle these questions. In several cases we showed that the simplest method of
converting to a finite automaton, implementing the language operation under considera-
tion in finite automata, and converting the result back to a regular expression is already
optimal. In that last step, a sophisticated choice of the elimination ordering can signifi-
cantly shorten the resulting regular expression, as we saw for the operations shuffle and
intersection. In contrast, we also identified a few other language operations that can be
implemented directly on regular expressions. In this way, we can avoid an exponential
blow-up in size. There are of course many other interesting language operations waiting
to be studied. Another direction is to study these problems for subclasses of regular
languages. Often the instances that really arise in practical applications are much more
constrained. For example, we determined the cost of the circular shift for finite lan-
guages. Some operations on other subclasses of regular languages were studied by Gelade
and Neven [65].
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Finally, we mention the following research direction, which might be a less obvious
offspring of this thesis than the questions outlined above. Inspired by the tradeoff observed
when comparing state minimization versus transition minimization for nondeterministic
finite automata, we can ask similar questions for regular expressions. We think it is
unlikely that every regular language admits a regular expression that is simultaneously
of minimum alphabetic width and of minimum star height. This would indicate that
there is a tradeoff between structural and descriptional complexity. A promising family
of examples might be the languages presented in Example 2.5.
This last problem appears to be related to some difficult questions: For instance, a

polynomial upper bound on the size of an equivalent regular expression of minimum
star height would locate the famous star height problem in PSPACE. While the star
height problem is known to be decidable for some time now, analyzing the computational
complexity of the problem is still subject to active research, see e.g. [124].
We can also ask some more moderate questions with a similar flavor. For example, in

this work, we have proved that the star height is always logarithmic in the alphabetic
width of a regular language. It can be shown, using the methods presented in Chapter 10,
that we can always obtain an expression of star height this low, while the size of the
resulting expression is still polynomial in the minimum required size. Thus it is natural
to ask whether we can trade expression size for star height: For instance, can we achieve
sublinear star height while allowing only linear increase in expression size?

Thus it appears as if every obtained answer will entail a whole collection of new and
intriguing research challenges. This stems from the fact that an improved understanding
of a phenomenon often allows us to formulate more sophisticated, and also more detailed,
questions about it.
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