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Abstract. Recently lower bounds on the minimum required size for the
conversion of deterministic finite automata into regular expressions and
on the required size of regular expressions resulting from applying some
basic language operations on them, were given by Gelade and Neven [8].
We strengthen and extend these results, obtaining lower bounds that are
in part optimal, and, notably, the presented examples are over a binary
alphabet, which is best possible. To this end, we develop a different, more
versatile lower bound technique that is based on the star height of regular
languages. It is known that for a restricted class of regular languages, the
star height can be determined from the digraph underlying the transition
structure of the minimal finite automaton accepting that language. In
this way, star height is tied to cycle rank, a structural complexity measure
for digraphs proposed by Eggan and Büchi, which measures the degree
of connectivity of directed graphs.

1 Introduction

One of the most basic theorems in formal language theory is that every regular
expression can be effectively converted into an equivalent finite automaton, and
vice versa [16]. While algorithms accomplishing these tasks have been known for
a long time, there has been a renewed interest in these classical problems during
the last few years. For instance, new algorithms for converting regular expressions
into finite automata outperforming classical algorithms have been found only
recently, as well as a matching lower bound of Ω(n · log2 n) on the number of
transitions required by any equivalent nondeterministic finite automaton (NFA).
The lower bound is, however, only attained for growing alphabet size, and a
better algorithm is known for constant alphabet size, see [26] for the current
state of the art.

In contrast, much less is known about the converse direction, namely of con-
verting finite automata into regular expressions. Apart from the fundamental
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Table 1. Comparing the lower bound results for conversion problems of deterministic
finite automata (DFA) and regular expressions (RE), where ∩ denotes intersection,
¬ complementation, and x the shuffle operation on formal languages. Entries with a
bound in Θ(·) indicate that the result is best possible, i.e., refers to a lower bound
matching a known upper bound.

Conversion Gelade and Neven [8] this paper with |Σ| = 2

planar DFA to RE1 — 2Θ(
√

n) [Thm. 11]

DFA to RE 2Ω(
√

n/ log n) for |Σ| = 4 2Θ(n) [Thm. 16]
RE ∩ RE to RE 2Ω(

√
n) for |Σ| = O(n) 2Ω(n) [Cor. 8]

RE x RE to RE — 2Ω(n) [Cor. 9]

¬RE to RE 22Ω(n)
for |Σ| = 4 22Ω(

√
n log n)

[Thm. 10]

nature of the problem, some applications lie in control flow normalization, in-
cluding uses in software engineering such as automatic translation of legacy
code [20]. All known algorithms covering the general case of infinite languages
are based on the classical ones, which are compared in the survey [25]. The
drawback is that all of these (structurally similar) algorithms return expressions
of size 2O(n) in the worst case, and Ehrenfeucht and Zeiger exhibit a family
of languages over an alphabet of size n2 for which this exponential blow-up is
inevitable [6]. These examples naturally raise the question whether a size blow-
up of 2Ω(n) can also occur for constant alphabet size, a question posed in [7].
One of the main results in this paper is a positive answer to this question, even
in the case of a binary alphabet; note that the conversion problem becomes
polynomial for unary languages [7]. Currently, there are not many lower bound
techniques for regular expression size. A notable exception is the technique used
in the above mentioned work [6], which however requires, in its original version,
a largely growing alphabet. Recently, a variation of Ehrenfeucht and Zeiger’s
method was used in [8] to get similar but weaker lower bounds on the conver-
sion problem for small alphabets. The above mentioned question, however, was
left open. A technique based on communication complexity that applies only for
finite languages, is proposed in [10]. They give an optimal bound of nΘ(log n) for
the conversion problem in the case of finite languages.

Independently of [8], we take a different direction, by relating the descrip-
tional complexity of regular languages (alphabetic width) to their structural
complexity (star height). The star height is a structural complexity measure of
regular languages that has been intensively studied in the literature for more
than 40 years, see [11,15] for a recent treatment. Determining the star height
can be in some cases reduced to the easier task of determining the cycle rank
of a certain digraph. The latter concept is related to the cycle rank of digraphs,
a digraph connectivity measure defined by Eggan and Büchi [5] in the 1960s.
Since measuring the connectivity of digraphs is a very active research area, see,
1 The lower bound result on the conversion of planar deterministic finite automata to

regular expressions holds for |Σ| = 4.
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e.g., [1,2,14,22], and as we feel that cycle rank is a interesting concept in its own
right, we summarize and further develop the theory of cycle rank. For a more
thorough treatment, including all proofs and comparison to some other recently
proposed measures we refer to [9]. These connections turn out to be fruitful,
allowing not only for proving a tight lower bound on the problem of convert-
ing finite automata into regular expressions, but also for giving reasonably good
lower bounds for the alphabetic width of some basic regular language operations,
namely intersection, complement, and shuffle. In this way, we independently im-
prove on and extend the recently obtained results in [8]—we summarize and
compare the obtained results in Table 1.

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [12].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the al-
phabet Σ, including the empty word ε. The length of a word w is denoted by |w|,
where |ε| = 0. A (formal) language over the alphabet Σ is a subset of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the usual
way:2 ∅, ε, and every letter a with a ∈ Σ is a regular expression; and when r1
and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)∗ are also regular
expressions. The language defined by a regular expression r, denoted by L(r), is
defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1 + r2) = L(r1)∪L(r2),
L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. The size or alphabetic width of a
regular expression r over the alphabet Σ, denoted by alph(r), is defined as the
total number of occurrences of letters of Σ in r. For a regular language L, we
define its alphabetic width, alph(L), as the minimum alphabetic width among
all regular expressions describing L.

It is well known that regular expressions and finite automata are equally pow-
erful, i.e., for every regular expression one can construct an equivalent (determin-
istic) finite automaton and vice versa. Finite automata are defined as follows:
A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. The language accepted by the finite automaton A is defined as
L(A) = { w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where δ is naturally extended to a func-
tion Q × Σ∗ → 2Q. A nondeterministic finite automaton A = (Q, Σ, δ, Q0, F ) is
deterministic, for short a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In
this case we simply write δ(q, a) = p instead of δ(q, a) = {p}. Two (determinis-
tic or nondeterministic) finite automata are equivalent if they accept the same
language.
2 For convenience, parentheses in regular expressions are sometimes omitted and the

concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.
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In the remainder of this section we fix some basic notions from graph theory.
A directed graph, or digraph, G = (V, E) consists of a finite set of vertices V
with an associated set of edges E ⊆ V × V . An edge whose start and end vertex
are identical is called a loop. If G has no loops, then G is called loop-free. If the
edge relation of G is symmetric, then G is an undirected graph, or simply graph.
It is often convenient to view the set of edges of an undirected graph as a set of
unordered pairs {u, v}, with u and v in V . Only if there is no risk of confusion,
for an undirected graph G, we refer to the set { {u, v} | (u, v) ∈ E } as the set
of edges of G, and, abusing notation, denote it by E. A digraph H = (U, F ) is a
subdigraph, or simply subgraph, of a digraph G = (V, E), if U ⊆ V and for each
edge (u, v) ∈ F with u, v ∈ U , the pair (u, v) is an edge in E. A subgraph H is
called induced, if furthermore for each edge (u, v) ∈ E with u, v ∈ U , the pair
(u, v) is also an edge in F . In the latter case, H is referred to as the subgraph of
G induced by U , and denoted by G[U ]. When removing a set of vertices U , or a
single vertex u, from G, it is often handy to write G − U and G − u to denote
the induced subgraphs G[V \ U ] and G[V \ {u}], respectively.

We recall the definitions of some other important concepts related to walks
and reachability. A subgraph H = (U, F ) of G is strongly connected, if for every
vertices u and v, both u is reachable from v and v is reachable from u. A strongly
connected subgraph H is called nontrivial if H has at least one edge, otherwise it
is called trivial. Note that every trivial strongly connected subgraph has at most
one vertex, but if G is not loop-free, it also has nontrivial strongly connected
subgraphs with only one vertex. A set of vertices ∅ ⊂ C ⊆ V is a strongly
connected component if G[C] is strongly connected, but for every proper superset
C′ ⊃ C, the induced subgraph G[C′] is not strongly connected.

3 Star Height of Regular Languages and Cycle Rank of
Digraphs

3.1 Definitions and Early Results

For a regular expression r over Σ, the star height, denoted by h(r), is a structural
complexity measure inductively defined by: h(∅) = h(ε) = h(a) = 0, h(r1 · r2) =
h(r1+r2) = max (h(r1), h(r2)), and h(r∗1) = 1+h(r1). The star height of a regular
language L, denoted by h(L), is then defined as the minimum star height among
all regular expressions describing L. We will later establish a relation between
star height and alphabetic width of regular languages. This relation will allow
us to reduce the task of proving lower bounds on alphabetic width to the one of
proving lower bounds on star height.

First, we call to attention a structural complexity measure for digraphs in-
timately related to the star height of regular languages, called the cycle rank,
suggested by Eggan and Büchi in the course of investigating the star height of
regular languages [5].

Definition 1. The cycle rank of a directed graph G = (V, E), denoted by cr(G),
is inductively defined as follows: (1) If G is acyclic, then cr(G) = 0. (2) If G is
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strongly connected, then cr(G) = 1 + minv∈V {cr(G − v)}, where G − v denotes
the graph with the vertex set V \ {v} and appropriately defined edge set. (3) If G
is not strongly connected, then cr(G) equals the maximum cycle rank among all
strongly connected components of G.

In the following, we will be sometimes concerned with the cycle rank of the di-
graph underlying the transition structure of finite automata, so for a given finite
automaton A, let its cycle rank, denoted by cr(A), be defined as the cycle rank
of the underlying graph. The following relation between cycle rank of automata
and star height of regular languages became known as Eggan’s Theorem [5]:

Theorem 2 (Eggan’s Theorem). The star height of a regular language L
equals the minimum cycle rank among all nondeterministic finite automata ac-
cepting L.

The star height of a regular language appears to be a more difficult concept
than alphabetic width, see, e.g., [11,15]. In light of this consideration, proving
lower bounds on alphabetic width via lower bounds on star height appears to be
trading a hard problem for an even harder one. But early research on the star
height problem established a subclass of regular languages for which the star
height is determined more easily, namely the family of bideterministic regular
languages, which are defined as follows: A regular language L is bideterministic if
there exists a deterministic finite automaton A with a single final state such that
a deterministic finite automaton accepting the reversed language LR is obtained
from A by reverting the direction of each transition and exchanging the roles
of the initial and final state. The star height of bideterministic languages was
shown to be computable in [18], building on earlier work which was, however,
published only later in [19]:

Theorem 3 (McNaughton’s Theorem). Let L be a bideterministic language,
and let A be the minimal trim, i.e., without a dead state, deterministic finite au-
tomaton accepting L. Then h(L) = cr(A).

In fact, the minimality requirement in the above theorem is not needed, since
every bideterministic finite automaton in which all states are useful is already
a trim minimal deterministic finite automaton. Here, a state is useful if it is
both reachable from the start state, and from which the final state is reachable
from it.

In order to relate star height to alphabetic width, and to find lower bound
techniques for the cycle rank, we study the latter concept in more detail. First,
we establish a basic fact about cycle rank, which is used throughout the fol-
lowing sections. The second part of the following statement is found in [19,
Theorem 2.4.], and the other part is established by an easy induction:

Lemma 4. Let G = (V, E) be a digraph and let U ⊆ V . Then we have the
inequalities cr(G) − |U | ≤ cr(G − U) ≤ cr(G), where G − U denotes the graph
with vertex set V \ U and appropriately defined edge set. �
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3.2 Cycle Rank Via Cops and Robbers

The characterization of cycle rank in terms of some “game against the graph”
was already suggested in [19]. We give a modern formulation in terms of a cops
and robber game. This characterization provides a useful tool in proving lower
bounds on the cycle rank of specific families of digraphs. Moreover, many other
digraph connectivity measures proposed recently admit a characterization in
terms of some cops and robber game; this allows to compare the cycle rank with
these other measures.

The cops and strong visible robber game, defined in [14], is given as follows:
Let G = (V, E) be a digraph. Initially, the cops occupy some set of X ⊆ V
vertices, with |X | ≤ k, and the robber is placed on some vertex v ∈ V \ X . At
any time, some of the cops can reside outside the graph, say, in a helicopter.
In each round, the cop player chooses the next location X ′ ⊆ V for the cops.
The stationary cops in X ∩ X ′ remain in their positions, while the others go
to the helicopter and fly to their new position. During this, the robber player,
knowing the cops’ next position X ′ from wire-tapping the police radio, can run
at great speed to any new position v′, provided there is both a (possibly empty)
directed path from v to v′, and a (possibly empty) directed path back from v′

to v in G−(X ∩X ′), i.e., he has to avoid to run into a stationary cop, and to run
along a path in and to stay in the same strongly connected component of the
remaining graph induced by the non-blocked vertices. Afterwards, the helicopter
lands the cops at their new positions, and the next round starts, with X ′ and v′

taking over the roles of X and v, respectively. The cop player wins the game if
the robber cannot move any more, and the robber player wins if the robber can
escape indefinitely.

The immutable cops variant of the above game restricts the movements of the
cops in the following way: Once a cop has been placed on some vertex of the
graph, he has to stay there forever. The hot-plate variant of the game restricts
the movements of the robber in that he has to move along a nontrivial path in
each move—even if the path consists only of a self-loop. These games are robust
in the sense that small variations of rules, such as letting the robber player begin,
or allowing only the placement of one cop at a time, do not alter the number of
required cops. Also note that at most one additional cop is needed if we drop the
hot-plate restriction. The following theorem gives a characterization of the cycle
rank in terms of such a game. Due to space constraints, the proof is omitted.

Theorem 5. Let G be a digraph and k ≥ 0. Then k cops have a winning strategy
for the immutable cops and hot-plate strong visible robber game if and only if the
cycle rank of G is at most k, i.e., cr(G) ≤ k. �

4 Lower Bounds on Regular Expression Size

Now we have developed enough tools to derive lower bounds on alphabetic width
in terms of star height.

Theorem 6. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3 (h(L)−1) −1.
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Proof. Let r be a regular expression over Σ of alphabetic width n = alph(L).
Then the construction given in [13] shows how to transform this expression into
an equivalent nondeterministic finite automaton A with ε-transitions having at
most n+1 states. It is not hard to see that the digraph underlying the transition
structure of the constructed automaton has undirected treewidth at most 2. With
a graph separator technique, we show the following claim:

Let G be a digraph with n vertices and undirected treewidth at most k.
Then cr(G) ≤ 1 + (k + 1) · log n.

We argue as follows: First, we lift some notions and results concerning graph
separators known for undirected graphs (see, e.g., [21]), to the case of digraphs:
Let G = (V, E) be a digraph and let U ⊆ V be a set of vertices. A set of
vertices S is a weak separator for U if every strongly connected component of
G[U \S] contains at most 1

2 |U | vertices. For real numbers 0 ≤ k ≤ |V |, let s(G, k)
denote the maximum of the size of the smallest weak separator for U , where the
maximum is taken over all subsets U of size at most k of V . The weak separator
number of G, denoted by s(G), is defined as s(G, |V |).

Next we prove the following relation: Let G = (V, E) be a digraph with n ≥ 1
vertices. Then

cr(G) ≤ 1 +
∑

0≤k≤log n−1

s
(
G,

n

2k

)
. (1)

The proof proceeds by induction on n. In the case n = 1, we have s(G) = 0,
and the sum in the statement of the lemma is empty, as desired. The induction
step is as follows: By definition of weak separator number, G has a weak sep-
arator S of size at most s(G, n). Let C1, C2, . . . , Cp be the strongly connected
components of G − S. Each of these has cardinality at most n

2 . With Lemma 4,
we obtain

cr(G) ≤ |S| + max
1≤i≤p

cr(Ci) ≤ s
(
G,

n

20

)
+ max

1≤i≤p
cr(Ci).

Since for each k ≤ n and for each strongly connected component Ci obviously
holds s(Ci, k) ≤ s(G, k), we have by induction hypothesis

max
1≤i≤p

cr(Ci) ≤ 1 +
∑

0≤k≤log(n/2)−1

s

(
G,

n/2
2k

)
= 1 +

∑

1≤k≤log n−1

s
(
G,

n

2k

)
,

where the right hand side is obtained by simply shifting the summation index.
By putting the two inequalities together, the proof of Inequality (1) is completed.

This establishes a relation between cycle rank and weak separator number,
namely cr(G) ≤ 1+ s(G) · logn, if G is a digraph with n vertices. Moreover, it is
known from [24] that digraphs with undirected treewidth at most k have weak
separator number at most k + 1, thus establishing our claim. Thus, we obtain
cr(A) ≤ 1+3 log(n+1). Finally, the proof is completed by using Theorem 2. �

This bound is almost tight: Define the language Ln inductively by L0 = ε and
Li = (a · Li−1 · b)∗, for i > 0. Then alph(Ln) is clearly at most 2n, but it is
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known from [19] that h(L2k) = k, for each k ≥ 1. In contrast, there cannot
exist an upper bound on the alphabetic width in terms of star height, since all
finite languages have star height 0, but there are only finitely many languages
of bounded alphabetic width.

4.1 Lower Bounds on Alphabetic Width of Language Operations

As a first application of Theorem 6, we exhibit a family of languages over a
binary alphabet that shows that several natural operations on regular languages
such as complement, intersection and shuffle cannot be supported efficiently
by regular expressions; most notably, complementation can require an almost
doubly-exponential blow-up in regular expression size. These languages have an
appealingly simple structure, and their star height was already studied, although
not completely determined, in the very first paper on star height of regular
languages [5].

Theorem 7. For m, n ∈ N, define Km = { w ∈ {a, b}∗ | |w|a ≡ 0 mod m }
and Ln = { w ∈ {a, b}∗ | |w|b ≡ 0 mod n }. Then we have h(Km ∩ Ln) = m, if
m = n, and h(Km ∩ Ln) = min(m, n) + 1, otherwise.

Proof. The stated upper bound on the star height is proved already in [5, Corol-
lary 2, pp. 394f.], so it remains to show a matching lower bound. It is straightfor-
ward to construct deterministic finite automata with m (n, respectively) states
describing the languages Km and Ln, respectively. By applying the standard
product construction on these automata, we obtain a deterministic finite au-
tomaton A accepting the language Km ∩ Ln. It is not hard to see that this
automaton is a minimal trim deterministic finite automaton, and furthermore
that it is bideterministic. Therefore Theorem 3 shows h(Km ∩ Ln) = cr(A).

The digraph underlying automaton A is the directed discrete (m × n)-torus
arising from the Cartesian graph product of two directed cycles, whose entan-
glement was determined by similar means in [2]. We give a lower bound on the
cycle rank of this digraph using the game characterization given in Theorem 5.
By symmetry, assume the torus has m rows and n columns, with m ≤ n. At
any stage of the game, we call a row (column, respectively) free, if each of the
vertices in the row (column, respectively) is neither yet occupied, nor announced
to be occupied in the current move of the cops. In the kth move of the cops,
there are at least m − k free rows and n − k free columns. As long as k < m, the
robbers’ strategy is to reside on the subgraph induced by the rows and columns
that are currently free. For k < m, each free row or column is strongly connected
itself, and each pair of free columns is strongly connected to each other via the
(nonempty) set of free rows. The strategy always yields a valid game position,
and this already shows the desired lower bound in the case m = n. In the case
m > n, as soon as the last free row is threatening to be occupied, the robber can
still flee to one of the remaining free columns. Thus an additional cop is needed,
since each free column itself forms a nontrivial strongly connected subgraph,
even though the columns are no longer strongly connected to each other. �
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Together with Theorem 6, we immediately obtain some results about the alpha-
betic width of operations on regular languages. The classical way to extend the
syntax of regular expressions is to allow intersection, thus obtaining the semi-
extended regular expressions, or to allow also complement, resulting in extended
regular expressions. It is known that semi-extended regular expressions can be
exponentially more succinct even than nondeterministic finite automata, and
hence than ordinary regular expressions. The former fact no longer holds if the
number of occurrences of the intersection operator is bounded. But for regular
expressions, already a single intersection operation can infer a huge blow-up in
the needed description size:

Corollary 8. For every m ≥ n, there exist languages Km and Ln over a binary
alphabet with alph(Km) ≤ m and alph(Ln) ≤ n, such that alph(Km ∩ Ln) =
2Ω(n). �

This improves a lower bound independently obtained in [8]. Another language
operation is the shuffle of two languages, which naturally arises in modeling the
interleaving of the action traces of two processes. The shuffle of two languages L1
and L2 over alphabet Σ is { w ∈ Σ∗ | w ∈ x x y for some x ∈ L1 and y ∈ L2 },
where the shuffle of two words x and y is defined as the set of all words of the form
x1y1x2y2 . . . xnyn, where x = x1 . . . xn, y = y1 . . . yn with xi, yi ∈ Σ∗, for 1 ≤
i ≤ n and n ≥ 1, and is denoted by x x y. While the shuffle operation preserves
regularity, it is known that regular expressions extended with the shuffle operator
can be exponentially more succinct than regular expressions—in fact, the same
holds for nondeterministic finite automata [17]. As with intersection, a similar
blow-up can be caused already by a single application of the shuffle operator
(which cannot be deduced from an argument solely based on automaton size).
Namely, the language from Theorem 7 can be written as (am)∗ x (bn)∗.

Corollary 9. For every m ≥ n, there exist languages Lm and Ln over a binary
alphabet with alph(Km) ≤ m and alph(Ln) ≤ n, such that alph(Km x Ln) =
2Ω(n). �

For numbers n that have many distinct prime factors, the language {a, b}∗ \
(Kn ∩Ln), where Kn and Ln are defined as in Theorem 7, can be expressed very
succinctly by a regular expression using a kind of Chinese Remainder Represen-
tation. In this way, we obtain for the complementation operation a lower bound
that is roughly doubly exponential, even for binary alphabets, thus complement-
ing a result given in [8] for 4-symbol alphabets—the proof is omitted due to lack
of space:

Theorem 10. There exists an infinite family of languages Ln over a binary
alphabet Σ with alph(Ln) ≤ n, such that alph(Σ∗ \ Ln) = 22Ω(

√
n log n)

. �

4.2 A Lower Bound for Converting DFAs into Regular Expressions

From the results in the previous chapter, it can be deduced that there are very
simple examples of languages over a binary alphabet for which a blow-up in
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size of 2Ω(
√

n) is inevitable when converting from an n-state deterministic finite
automaton to an equivalent regular expression. Next, we can show that this
bound can even be reached for planar deterministic finite automata, first studied
in [4], thus complementing a corresponding algorithmic result from [7] with an
optimal lower bound—again, the proof has to be omitted, but we note that the
transition structure of the witness DFA are undirected grid graphs.

Theorem 11. For alphabet size |Σ| ≥ 4, there is an infinite family of lan-
guages Ln over alphabet Σ acceptable by n-state planar deterministic finite au-
tomata, such that alph(Ln) ≥ 2Ω(

√
n). �

The obvious question is now if a lower bound of 2Ω(n) can be reached over a
constant alphabet, when starting with non-planar deterministic finite automata.
The rest of this section is devoted to a proof of this fact.

By Theorem 5, the cycle rank of an undirected graph G, i.e., a symmetric
digraph, can be described in terms of the immutable cops and strong visible
robber game. Note that in this case every connected component of size at least
two is also a nontrivial strongly connected component. The greedy strategy for
the robber player is to choose in each step the largest connected component he
can reach in the remaining graph. We will identify a class of graphs in which the
greedy strategy is particularly successful, namely expander graphs.

Definition 12. Let G = (V, E) be an undirected graph. For a subset U ⊂ V ,
the boundary of U , denoted by δU , is defined as δU = { v ∈ V \ U | {u, v} ∈
E for some u ∈ U }. An (undirected) d-regular graph G = (V, E) with n vertices
is called a (n, d, c)-expander, for c > 0, if each subset U ⊂ V of vertices satisfies
|δU | > c · |U |, if |U | < n/2 and |δU | ≥ c · (n − |U |), if |U | ≥ n/2.

A now standard probabilistic argument, originally from [23], shows that expander
graphs are the rule rather than the exception among d-regular graphs, for all
d ≥ 3.

Theorem 13 (Pinsker). There exists a fixed c > 0 such that for any d ≥ 3
and even integer n, there is an (n, d, c)-expander, which is furthermore d-edge-
colorable.3

The proof of the following theorem is similar to that of [3, Theorem 4], where it
was shown that each directed expander graph contains a long directed path.

Theorem 14. Let G be a (n, d, c)-expander with n ≥ 3. Then the cycle rank
of G is at least c

d+1 (n − 1), i.e., cr(G) ≥ c
d+1 (n − 1). �

The next lemma shows that such a graph, equipped with an edge coloring, can be
easily converted into a bideterministic finite automaton that accepts a language
of large star height and uses only the edge colors as input alphabet.
3 That is, one can assign to its edges d colors such that no pair of incident edges

receives the same color.



Finite Automata, Digraph Connectivity, and Regular Expression Size 49

Lemma 15. For every d-edge colorable, connected undirected graph G with n ver-
tices of cycle rank k, there exists an n-state deterministic finite automaton A over
a d-symbol alphabet such that the star height of L(A) is k.

Proof. Let G = (V, E) be such a graph, with V = {1, 2, . . . , n}. and maximum
degree d, equipped with an edge coloring c : E → {0, 1, . . . , d} such that no pair
of incident edges receives the same color. Given this colored graph, we construct
a deterministic finite automaton over the alphabet Σ = {a1, a2, . . . , ad} with
state set V , start and single final state v0 ∈ V (arbitrary), and whose transition
relation is defined as follows: δ(p, ai) = q if the colored graph G has an i-colored
edge {p, q}. It is not hard to see that this automaton is a trim bideterministic
automaton, and therefore minimal. Furthermore, its underlying digraph is sym-
metric, and its undirected version is isomorphic to G. By Theorem 3, the star
height of L(A) equals k. �

For the main theorem of this section we need the existence of a suitable ho-
momorphism that preserves star height. The existence of reasonably economic
binary encodings with this property have been already conjectured in [5], and
their existence was proved constructively in [19]: Let Σ = {a1, a2, . . . , ad} be
a finite alphabet, d ≥ 1, and let ϕ : Σ∗ → {a, b}∗ be the homomorphism de-
fined by ϕ(ai) = aibd−i+1, for i = 1, 2, . . . , d. Then for every regular language
L ⊆ Σ∗ the star height of L equals the star height of ϕ(L). Then Lemma 15 and
Theorems 6, 13, and 14 can be combined with the above presented star height
preserving homomorphism to give the following theorem.

Theorem 16. For alphabet size |Σ| ≥ 2, there is an infinite family of lan-
guages Ln over alphabet Σ acceptable by deterministic finite automata with at
most n states, such that alph(Ln) = 2Ω(n). �

This gives an affirmative answer to “Open Problem 3” in [7], which asked whether
such a family of languages exists, over some constant alphabet.
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