On Pumping Constants and Smallest Grammars
for Context-Free Languages

Hermann Gruber! and Markus Holzer?

! Planerio GmbH, Theresienh6he 11A, 80538 Miinchen, Germany
h.gruber@planerio.de
2 Institut fiir Informatik, Universitat Giessen
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

Abstract. We study the relationship between the minimal context-free
pumping constant of a context-free language and the size of the context-
free grammar that generates it. For the size, we consider the sum of the
lengths of the right-hand sides of the productions and the total number
of symbols to write the productions, including the “—” symbol in each
production; the latter size concept is known in the literature as symbol
complexity. We prove tight bounds for both size concepts. Furthermore,
we apply our results to some open problems on the symbol complexity of
languages. In particular, we show that for the language L, = {a"} the

symbol complexity is at least 6log, n and at most 6log, n + O(lolgf’ﬁ) o)

1 Introduction

Let G = (N,T,P,S) be a context-free grammar (CFG), where N and T are
disjoint alphabets of nonterminals and terminals, respectively, S € N is the
axiom, and P is a finite set of productions of the form A — «, where A € N
and o € (NUT)*. As usual, the transitive closure of the derivation relation =¢
is written as =¢,. If there is no danger of confusion, we simply write = (=%,
respectively) instead of = ¢ (=, respectively). The language generated by G is
defined as
LG)={weT"|S=w}.

For every context-free language the Bar-Hillel lemma [1] applies, which reads as
follows:

Lemma 1. Let L be a context-free language over X. Then, there is a constant p
(depending on L) such that the following holds: If z € L and |z| > p, then there
are words u,v,w,x,y € X* such that z = wwzy, |vz| > 1, |vwz| < p, and
wolwaty € L for t > 0—it is then said that v and x can be (simultaneously)
pumped in z.

For a context-free language L, let mpcf(L) denote the minimal number p
satisfying the conditions of Lemma 1. We find the following situation for context-
free languages, which follows from the proof of the pumping lemma given in [11,
Chapter 6]:



Theorem 2. Let L be generated by the context-free grammar G = (N, T, P, S).
Then
mpef(L) < m*+,

where n := |N| and m := max{2,|a| | A > a € P}.

If the given context-free grammar is in Chomsky normal form,? the proof
in [13] yields the bound mpcf(L) < 2". Notice, however, that the conversion to
normal form incurs a size blow-up in the worst case [14].

When considering linear context-free languages, the bound on the minimal
pumping constant becomes linear as we will see next. A context-free grammar
is said to be linear context-free (LIN) if the productions are of the form A — «,
where A € N and o € T*(N U {e})T*—here ¢ refers to the empty word. The
pumping lemma for linear-context free languages reads like the pumping lemma
for context-free languages, but with one exception: instead of |[vwz| < p, now the
condition |uvzy| < p is required—see [13, page 143, Exercise 6.11]. For a linear
context-free language L let mplin(L) denote the minimal number p satisfying
the conditions of the pumping lemma for linear context-free languages. The next
result was shown in [7, Thm. 6]:

Theorem 3. Let L be a linear context-free language generated by the linear
context-free grammar G = (N, T, P,S). Then

mplin(L) < (m—1)-n+2,
where n = |N| and m := max{|a| | A > a € P}.

In the above theorems, the number of nonterminals and the maximal length
of right-hand sides of the productions play a crucial réle. Are there any other
relations between the minimal pumping constant of a context-free language and
some descriptional complexity measure of context-free languages that is closer
to the size of the grammar that generates the language in question? We partially
answer this question in the forthcoming.

2 Results on Minimal Context-Free Pumping Constants

Several concurrent notions to measure the actual size of a context-free grammar
have been proposed in the literature, see, e.g., [2,6,8,11,12,15]. The most intuitive
ways to measure the size of a context-free grammar, as they appear in textbooks
on automata theory, are

1. to count the sum of the lengths of the right-hand sides of the rules, or
2. to count the total number of symbols to write down the rules, including
the “—” symbol in each production.

3 A context-free grammar G = (N, T, P, S) is in Chomsky normal form if every pro-
duction is either of the form A — a or A - BC or S — ¢, for A,B,C € N and
acT.



The latter way to measure the size of a context-free grammar facilitates telling
apart the start and end of each production, and, originating from [8]. This seems
to be the oldest explicit notion of grammar size. The recent literature in the field
of descriptional complexity [3,10] refers to this measure as the symbol complexity
of a context-free grammar. The convention to use the sum of the length of
the right-hand sides of the productions has been adopted by papers dealing
with the smallest grammar problem. In that optimization problem, the task is,
given word w, to find a context-free grammar G, such that (i) the grammar G
generates the single word w and (ii) the size of G is as small as possible. The first
systematic study of grammar-based compression [2] proved that the size of G is
always in £2(log |w]); our results below can be seen as an extension of that result
to general context-free grammars.

We start our investigation by determining a tight bound on the minimal
context-free pumping constant in terms of the sum of the lengths of the right-
hand sides of the grammar. For this, we need some properties of a function p
which became known as the maximum product function w.r.t. a partition of the
number [9], that is, the value p(n) is obtained by maximizing the product H?:o k;
of positive integers k; subject to the condition Z?:o k; =n, for 1 < k; <n with
0 < ¢ < h. Moreover, p(n) obeys a recursive relation, namely, p(1) =1, p(2) = 2,
p(3) =3, p(4) = 4, and p(n) = 3 - p(n — 3), for n > 4. For further uses of this
function, see sequence A000792 (with offset 1) in “The On-line Encyclopedia of
Integer Sequences” (OEIS)—Table 1. This function became also known in graph

OEIS Sequence

P. Halmos  A000792 (offset 1) 1, 2, 3, 4, 6, 9, 12, 18, 27, 36,
54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, ...

J. Derbyshire A193286 1,2,3,4,5,6,7,9, 12, 16,
20, 25, 30, 36, 48, 64, 80, 100, 125, 150,
192, 256, 320, 400, 500, 625, 768, 1024, 1280, 1600,
2000, 2500, 3125, ...

Table 1. OEIS sequences.

theory as the Moon-Moser bound [18], see also [17]. For the proofs to come, we
define p(0) = 0, which is different from the convention used for A000792. Then
the following statement on the p function is immediate: (i) the recurrence is a
literal translation of the definition of the p function as the maximum value of the
product subject to the sum condition, and (ii) the closed formula follows since
one takes as many of the k;’s as possible to be 3 and then use one or two 2’s
only; larger k;’s with k; > 4 can be replaced by 2 and k; — 2, since 2(k; —2) > k;
for k; > 4, in order to increase the product value. Thus, we obtain the following
result.



Lemma 4. For a positive integer n, let the function p(n) be given by the recur-
rence p(i) =1 for 0 <i <3, and

p(n) = gggn{k p(n—k)} forn=4.

Then
, formn=0
forn=1
) forn=0 (mod 3) andn >1
.3"%47 form=1 (mod 3) andn >4

n

.3"5, forn=2 (mod 3).

wls

p(n) =

N = W = O

Also, p(n—k)+k < p(n

~—

, form > 1, and a positive integer k with 1 < k <n. 0O

Now we are ready for the tight upper bound on the minimal pumping constant
of context-free languages in terms of the sum of the lengths of the right-hand
sides of the grammar.

Theorem 5. Let L be generated by the context-free grammar G = (N, T, P, S),
where L is not empty. Then

mpef(L) < p(me) + 1,

where mqg 1= Z(A_m)ep || and p is the function from Lemma 4. Furthermore,
for every m > 0, there exists a context-free grammar G,, witnessing that this
bound is tight.

Proof. We prove the upper bound using the following statement: Let w be a
word in L(G); if w cannot be pumped, then |w| < p(mg).

We prove this statement by lexicographic induction on the the parameter mg
and the minimum depth of a parse tree T in G for w. If d(T") denotes the depth
of parse tree T, then for the base case of the induction we have a grammar G
with mg = 0, and a parse tree of depth 1. In the latter, the root is labeled by
the start symbol S, and there are |w| = mg terminal leaves. We obtain p(0) = 0,
thus establishing the base case of the induction.

For the induction step, assume that the claim holds for all grammars G’ with
mg < mg and, in G, for all words admitting a parse tree of depth at most d— 1.
We consider two cases. Consider a parse tree T' of depth d for w:

Case 1. There is a path in T from the root to some leaf labeled with a terminal
symbol, such that the start symbol S appears at least twice.
The start symbol appears as a label at the root of the parse tree. There is
also a proper subtree of T' of depth at most d— 1, whose root is labeled by S.
This subtree is parse tree of a word y according to the grammar G, and y is
a contiguous subword of w.
Case la. Assume y = w. Then we have a contradiction, since we chose w

as a word not admitting a parse tree of depth less than d.



Case 1b. Otherwise, assume y # w. Then we can write w = zyr with |z| > 0
or |y| > 0,and S =* xSz as well as S =* y. Thus, we have z'yz* € L(G),
for all 4 > 0, and w can be pumped. Similarly, we have a contradiction
also in this subcase.

Case 2. On every path in T from the root to some leaf labeled with a terminal
symbol, the start symbol S appears only once.

There is a production p = (S — () that corresponds to the root of the parse

tree and its children.

Case 2a. Right-hand side 8 contains at least one terminal symbol. Let p’
denote the production obtained from p by deleting the first terminal
symbol ¢ on its right-hand side, and let G’ denote the grammar obtained
from G by replacing the production p with p’. Then, mg: = mg — 1,
and there is a word w’ such that w’ is obtained from w by deleting a
single letter, and w’ admits a parse tree of depth d according to G'. By
the induction assumption, |w| = |w'| + 1 < p(meg — 1) + 1. Recall from
Lemma 4 that we have p(mg — 1) +1 < p(mg), thus establishing the
bound in this subcase.

Case 2b. Right-hand side 8 contains only nonterminal symbols. If there
are j occurrences of nonterminals in 3, then there are j subtrees of depth
at most d — 1 whose leaves spell out a subword of w each. Together these
subwords make up the word w. Notice that neither of the subtrees uses
the variable S, and also not p. If B is the nonterminal label of such a
subtree, it is a parse tree of the context-free grammar

Gp = (N\{S},T,P\{p},B)

We next show that we can assume 1 < j < mg: because || = j
and |8| < mg, we have mg — j > 0. Also, if j = m¢, then no terminals
can appear on the right side of any production. It follows that |w| = 0.
Since d(T) > 2, we must have j > 1. Thus, 1 < j < mg if w is not
empty.

By the induction assumption, each of the j occurrences of a nonterminal
generates a contiguous substring of w, and each such substring has length
at most p(mg — j). Hence we obtain

J
|w] < Zp(mg —j), for some j with 1 < j < mg.
i=1

Observe, that all summands in the above sum are identical, so we can
rewrite the inequality as |w| < j - p(mg — j). In turn, by Lemma 4, we
have j - p(mg — j) < p(mg) for each such j. Combining the last two
inequalities yields |w| < p(m¢) also in this case, and the proof of the
upper estimate is completed.

Regarding the grammars witnessing that the bound is tight, let us first con-
sider an example with m = 13. With n = | %] + 1 = 5, grammar G3 is given



with variables Aj, As, ... A5, alphabet X = {a}, and productions

A = Ai1Ai1 Ay, for 1 <i <3,
Ag — AsAs,

and
As — aa,

and the axiom A;. The pattern generalizes as follows: grammar G,,, has n vari-
m

ables, where n = % when m is divisible by 3, and n = | % | +1 otherwise; of these
variables, all but the last two produce 3 symbols each. When m = 1 (mod 3)
and m > 4, the last two variables produce only 2 symbols each; when m = 2
(mod 3), then the penultimate variable produces 3 symbols, and the last vari-
able produces 2 symbols; when m = 0 mod 3, then also the last two variables
produce 3 symbols each. For the edge case m = 1, we have a single production
that produces a single terminal symbol. It is readily seen that G,, generates a

single unary word of length p(m). O

Let us quickly consider the case of linear context-free languages. Regarding
the sum of the lengths of the right-hand sides of the grammar, we can proceed
as in the proof of Theorem 5, but the analysis degenerates to some easy cases.
The proof is left as an exercise to the reader; we also note that the new bound
implies the previous one from [7, Thm. 6].

Theorem 6. Let the language L be generated by the linear context-free grammar
G = (N,T,P,S), where L is not empty. Then

mplin(L) < mg+1,

where mg = Z(A_}a)ep |a|. Furthermore, for every m > 1, there exists a linear
context-free grammar G, witnessing that this bound is tight. a

Next let us consider the symbol complexity of a grammar, which counts the
total number of symbols to write down the rules, including the “—” symbol in
each production. As before, we first state a technical lemma, which relates to
an integer sequence. The latter is the solution to a recreational mathematical
puzzle, described in the following. A text editing software allows for the following
“keystroke” actions:

— typing a single character,

— selecting all text (Ctrl+A on Windows and Linux operating systems, Cmd-+A
for Mac users),

— copying the selection to the clipboard (Ctrl+C on Windows and Linux op-
erating systems, Cmd+C for Mac users), and

— pasting the clipboard contents (Ctrl+V on Windows and Linux operating
systems, Cmd+V for Mac users).

The keyboard problem asks, given a positive integer n, for the maximum amount
of characters that can be produced using n keystroke actions. Note that the copy



command de-selects the buffer text, i.e., we perform copying with replacement,
which means that the first paste, or simple insertion, after copying, eliminates,
overwrites, or otherwise renders obsolete the currently existing text output. For
instance, the 11-keystroke sequence aaaACVV ACVa (simple character a and
select, copy, and paste simplified) outputs 7 characters—the buffer change is
depicted by the sequence

e =% a =% aa = aaa - aaa =€ aaa =" aaa =V aaaaaa

—)A aaa aaaq —)C aaa aaq —)V aaa aaa —° aaa aaa a.

For 11 keystrokes the maximum amount of characters obtainable is 20—by the
keystroke sequence aaaaa ACVVVV. A solution of the problem can be found
in [19], and is named o(n)—see Table 1 and for more information consult
A193286 in OEIS. The value o(n) is obtained by maximizing the product H?:o k;
of positive integers k; subject to the condition Z?:o k; = n — 2h, where h is the
number of copy operations. Moreover, o(n) obeys a recursive relation: we have
o(n) =n for 1 < n < 7; a few sporadic values occur with o(8) = 32, 0(12) = 52,
o(13) =6 -5, 0(19) = 53, 0(20) = 6 - 5%, 0(26) = 5%, and ¢(33) = 5°. For all
other n, the formula o(n) = 4-o(n — 6) applies; see [19] for further background
and explanation. We obtain the following result (again, we define that o(0) = 0):

Lemma 7. For a positive integer n, let the function o(n) be given by the recur-
rence o(n) =n, for 0 <n <7, and

— . - — > .
o(n) 13%133572{]{ on—k—2)}, forn>8

Then

52 -4("_12)/6, fornmod 6 =0 and n > 12
53 ~4(”_19)/67 formmod6=1 andn > 19
54 -4("’26)/6, fornmod 6 =2 and n > 26
55 .4(n=33)/6 " for n mod 6 = 3 and n > 33
4(n+2)/6 for nmod 6 = 4
5. 4(n=5)/6 for nmod 6 = 5.

The finite number of remaining cases for o(n) can be found in Table 1 un-
der A193286. O

Proof. The recurrence on o(n) is a literal translation of its definition as the max-
imum product H?:o k; of positive integers k; subject to the condition Z?:o k; =
n — 2h, where h is the number of multiplications used.

Provided n is large enough, we immediately obtain a formula for o(n) for
each remainder of n modulo 6 from the original recurrence o(n) = 4 - o(n — 6),
together with the sporadic values given above. The tedious details are left to the
reader. O



Next we study a recurrence, which looks very similar to the recurrence of o,
with a few slight exceptions:

Theorem 8. For an integer n > 2, let the function u(n) be given by the recur-
rence (1(2) =0, p(3) =1, p(4) =2, p(5) = 3, and

p(n) = max{ p(n —1) +1, 2;]?2%(74% ~p(n—k—2)}}, forn > 6.

Then p(n +2) = o(n), for n > 0. In particular, we have

50 . 4n/6, fornmod6=0 andn >6
51.4(=7/6 " fornmod 6 =1 and n > 7,
_ 52.4(n=149/6 " for nmod 6 =2 and n > 14
uln) = 53 . 4n=21/6 " for nmod 6 = 3 and n > 21
5. 4(”_28)/6, fornmod 6 =4 and n > 28
55 . 4("_35)/6, for nmod 6 =5 and n > 35.

The finite number of remaining cases for p(n) can be found in Table 1 un-
der A193286, taking care of the offset by two.

Proof. First, reconsider the recurrence for the o function as stated in Lemma 7.
One observes that o(n—1)+1 < g(n), for n > 2. This is due to the fact that o(n)
grows exponentially for n > 33 and the remaining finite number of cases can be
verified by inspecting the appropriate sequence given in Table 1. Thus, for n > 8,
we can safely replace the o-recurrence with

o(n) =max{o(n—1)+1, 13%137)572{k co(n—k—2)}1}.

Now we are ready to show that p(n+2) = o(n), for n > 0 by induction on n.
Easy calculations show that p(n+2) = o(n), for 0 < n < 7; these are left to the
reader. Then, for the induction step, let n > 8. For p, the recurrence applies,
namely

p(n+2) =max{p((n+2)—1)+1, 2§k51?3f2)—4{k cu((n+2)—k—-2)}}

= 1)+1 k- —-k)}}.
max{p(n+1)+1, max {k-u(n—k)}}
For the inner maximum, we first show that the range for the variable k can
be extended to include & = 1 without altering the value of the maximum: By
induction, we know that p is strictly monotonically increasing for values up
to n — 1, because of the corresponding property of ¢. Thus,

2-pun—2)>2-(pn—1)+1)>1-p(n—1),
and hence

max {k-pu(n—k)}= max {k-pn—=~k)}.

2<k<n—2 1<k<n-—-2



The term maxi<g<n—2{k - p(n — k)}, when spelled out, reads as
max{ 1+ ju(n — 10,2 u(n — 2),..., (n - 3) - u(3), (n — 2) - pu(2) .

Since 14(2) = 0 by definition, this simplifies to maxi<x<n—s3{k-p(n—k)}. Then, by
the induction hypothesis, the p-terms can be replaced by appropriate o-terms.
Hence, the term is maxj<k<n—3{k - 0(n — k — 2)}. Next, we combine this term
with the outer maximum, which means that

p(n+2) =max{pu(n+1)+1, 1§I1?2§72{k culn—k)}}
=max{o(n—1)+1, 1;1?2573{]6 co(n—k—2)}}

=a(n),

where we have applied the alternative recurrence for ¢ with two nested maximum
operations. This completes the induction proof.

To finish the proof of the theorem, evaluating the formula for o from Lemma 7
at n — 2 somewhat magically reveals a pattern:

50 . 4n/6, for nmod 6 =0
51.4(=7/6 " fornmod 6=1and n > 7,
52.4(n=14)/6 " for pmod 6 = 2 and n > 14
p(n) =o(n—2)=q 4 (n—21)/6 _

5° -4 , fornmod6=3andn > 21
5%.4(n=28)/6 " for n mod 6 = 4 and n > 28
55 . 4(”_35)/6, for n mod 6 =5 and n > 35,

and the proof is completed. a
Observe, that the pattern mentioned above simplifies to
p(n) =57 med 6. 4(n=10)/6 g1 a1l n > ng, with ng =7 - (n mod 6) (1)

and will be later used in order to obtain a lower bound on the symbol complexity
of the language L,, = {a"} in Theorem 13.

Now, we are ready to estimate the minimal context-free pumping constant
in terms of the symbol complexity of the underlying context-free grammar.

Theorem 9. Let L be generated by the context-free grammar G = (N, T, P, S),
where L is not empty. Then

mpef(L) < plse) + 1,

where s¢ =34 q)ep(2+]al) and p is the function from Theorem 8. Further-
more, for every s > 2, there exists a context-free grammar G, witnessing that
this bound is tight.



Proof. For the upper bound, the proof runs essentially along the same lines as
the proof of Theorem 5, but instead of the parameter m¢, we express the bound
in terms of sq.

In Case 2b of the proof, some care has to be taken. If the right-hand side 8
of the production p = (S — f) consists of a single variable A, then let G’ denote
the grammar obtained from G by removing p and using A as the start symbol.
The grammar G’ has sg — 3 symbols, and generates the same word w with a
parse tree of lower depth.

So, the interesting subcase of Case 2b that remains is |3| > 2. Here, we
estimate || < sg — 4, taking the arrow symbol and the left-hand side of the
production p into account, as well as the fact that, in Case 2b, there is at least
one other production different from p. We note for later reference that estimate
2 < |B8] < sg — 4 implies that this subcase can only appear for sg > 6. Also, the
production p accounts for |3| 4+ 2 symbols, so the recurrent bound changes to
|lw| < j-o(sg—2—7), with 2 < j < sg — 4. Altogether, we obtain the following
recurrence, with start value p(2) = 0:

0, if s=2
max{u(s—1)+1, max {j-u(s—2—-74)}}, ifs>6,
2<j<s—4

obtaining the recurrence already studied in Theorem 8.

For the lower bound, we can construct a context-free grammar G4 generating
a single unary word, where the lengths of the right-hand sides are as in the
factorization of o(s) given in the formula. O

For linear context-free grammars, the bound is again very simple—the tight
bound is attained by grammars with a single production. The straightforward
proof is omitted.

Theorem 10. Let the language L be generated by the linear context-free gram-
mar G = (N, T, P,S), where L is not empty. Then

mplin(L) < sq — 1,
where sG =} 4 a)ep(2 + |al). Furthermore, for every s > 2, there exists a

linear context-free grammar G5 witnessing that this bound s tight. ad

3 More on the Symbol Complexity of Languages and
Operations

In this section, we apply these new insights to questions regarding descriptional
complexity of context-free languages and language operations. In [3], results are
presented which show how the required number of variables, productions and
symbols can behave under the operations union, concatenation and star. The

10



recurring question is the following: what is the range of complexities that can be
attained by applying a language operation to languages of complexity m and n?
We make this more precise for the symbol complexity under the concatenation
operation. Following [3] define

g™ (m,n) = { symb(L; - Ls) | symb(L1) = m and symb(Ls) = n },

where symb(L) refers to the symbol complexity of L, which is the minimum value
among the symbol complexity of all context-free grammars generating L. Note
that ¢ (m,n) = g™ (n,m) for all m and n.

Compared to the number of variables [5] or productions [4], the symbol com-
plexity of context-free languages seems to be more difficult to tackle. For ex-
ample, although it is known that all languages of symbol complexity 3 consist
of a single word of length 1, there are gaps in the known values for g™ (3,n),
see [10, pp. 106f.]—see Table 2.

n 3 4 5 6 > 7

7e-
symb .
g. (3771’){4}{5}{677}%071"6714’15, %0717”'767”4—87”"'_9’---

Table 2. Symbol complexity of concatenation.

Let L, = {a"}, for n > 0. With the help of this language we can prove the
following result:

Theorem 11. For n > 2, we have g*¥™(3,n) 3 n+ 1.

Proof. The cases n < 6 are treated in [10], so we assume n > 7. Consider the
unary singleton languages L = {a*}, for k£ > 1. Then by Theorem 9, we have
symb(L,(»)) = n, and in particular symb(L;) = 3. Again by Theorem 9, the
concatenation of these two languages cannot be generated with n symbols. On
the other hand, as observed in [8], we have symb(Ly+1) < symb(Ly) + 1, for
all £ > 0, thus symb(L,n)4+1) = n + 1, as desired. O

With the knowledge of symb(L,,(,,)) and symb(L,,(,)+1), one can sporadically

fill other gaps in the known values of g™ (m,n)—in particular when m and n
are small.

Theorem 12. For m,n > 3 with m+n < 12, we have g.sy'"b(m,n) Sm+n—2.

Proof. For 1 < k <7, we have symb(Ly,) = k+2. For k = 8, we have pu(9)+1 =8,
which implies that symb(Ly) = k + 2 also in that case. Thus, we can use L, o
and L, _o as witness languages—their concatenation L, 4,4 requires m+n —2
symbols. O

11



Only one of the values in the above theorem, namely ¢>™(4,5) 5 7, had been
previously determined in [10]. To give a final example, we evaluate symb(L4) = 6,
symb(Lg) = symb(Lg) = 10, symb(L13) = 11 and symb(Li3) = 12, to obtain
g*™(6,10) D {11,12}.

In the remainder of this section we are interested in the question, what is the
symbol complexity of L, = {a"} in general? An exact characterization may be
out of reach. In [2], a clever construction is given, which, among other ingredients,
works by recursively tripling the word length. However, in that paper, the goal
is to minimize the sum of lengths of the right-hand sides in the grammar. For
symbol complexity, the strategy needs to be adapted, so that it is based on
quadrupling.

Theorem 13. Let n > 1 be an integer and L,, = {a"}. Then

logn
6log,n < symb(L,) < 6log,n+ O (h)gl()gn) .

Proof. The lower bound can be derived from Equation 1 and Theorem 9 for
large enough s: the minimum size is attained when p(s) = n for some s. Then

n = 55med 6. 4(5=50)/6 with 56 = 7- (5 mod 6),

for large enough s. By applying the logarithm in base 4 to the above formula,
with 7 = s mod 6, we obtain:

e (
log, (n) = (logy 5) - 7 + ——

Multiplying by six and solving for s results in

s = 6log,(n) — (6log, 5) -7+ 7r = 6logy(n) + (7 — 6log, 5) - .
——

~6.958

The right-hand side is minimal when r = 0, so s > 6log,(n), which is the desired
lower bound.

For the upper bound, the algorithm is analogous to the proof of [2, Thm. 11].
Let b be a power 4, that is, b = 47, to be fixed later. The idea is to represent n
in base b as n = ZE:O d;b*, or merely, using Horner’s rule,

n=(((dib+di—1)b+d,)b+---+di) b+ dp.

Here, t = |log, n].

First, we introduce nonterminals 77,75, ...,T,_1 with productions 71 — a
and T;41 — aT;, for 1 < i < b— 1, so we can generate strings of each short
length at the cost of at most 4b symbols, without the need for extra symbols in
the construction to come.

We prove by induction on n that for n > 1, we can generate a™ with at most
(65 + 8)t additional symbols—in addition to those productions generating short
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strings, which we just have introduced. The cases with n < b — 1 are readily
verified, since ¢ = 0 then, and we need no additional symbols in that case.

Now, assume the claim holds for all integers up to n — 1. Let ¢ = [n/b]
and 7 = nmod b, then n = bg+r and t — 1 = |log, ¢]. Using the inductive
hypothesis, there is a grammar G, generating a? with (65 4+ 8)(t — 1) additional
symbols. Let G4 = (Ng, {a}, P;, Sq), where the set of nonterminals IV, contains
already 11,75, ..., Ty—1 and the set of productions P, the corresponding T;-rules
as described above.

We construct the context-free grammar G,, = (N, {a}, P, S,) with

N, =Ny U{X1,Xo,..., X;} U{S.},

where X1, Xo,...,X; and S,, are new pairwise different nonterminals not con-
tained in N,. Moreover P, contains all rules from P, and in addition

Sn = X1,

Xy = Xi 1 X 1 X 1 X, for2<i<j
as well as

X1 — 8.

Then, the variable X; generates a unary word of length ¢ - 47, and the nonter-
minal S, is responsible for adding length r to this. In the induction step, we
introduced at most 4 4+ 65 +4 = 65 + 8 new symbols, as desired.

Altogether, the grammar thus constructed requires at most 4b + (65 + 8)t
symbols. With b = 47 and t < log, n, we obtain

symb(G,,) < 497 + 65log,; n+ 8log,; n

. 8
=471 L 6logyn + Elog4 n.

Setting j = 1 |log, log, n], this evaluates to 6log, n + O(Ioglgogn) as desired. O

Notice that in the above proof, we have j > 1 only for n > 44" = 2512, which
is approximately 1.3 x 10154

Another interesting aspect is that the grammar constructed in the proof
of [2, Thm. 11] has a number of logs(n) + o(logn) productions, and the sum
of the lengths of the right-hand sides is 3 - logg(n). This accounts for a symbol
complexity of 5-logs(n) + o(logn), which is off the optimal bound by a factor(!)
of roughly gzig% ~ 1.05. Vice versa, let us count the sum of the right-hand sides
of the grammar we constructed in Theorem 13: the sum is 4 - log, n 4 o(logn),
whereas the optimal bound is approximately 3-logs n, as proved in [2, Thm. 11].
Regarding the sum of the right-hand sides, our new grammar is off the optimal
bound by a factor of ﬁzi‘;z ~ 1.06. This nicely illustrates how already a small
variation in the definition of size of a context-free grammar can largely affect
what kinds of grammars we consider optimal: will a strategy based on tripling the

word length, or rather, one based on quadrupling, yield the smallest grammar?
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We observe a similar discrepancy when restricting to grammars in Chomsky
normal form, as done, e.g., in [16]. Let us again consider the sum of the right-
hand sides. It is plausible that a smallest grammar G in Chomsky normal form

for L, has mg = 1+ 2 -logy n when n is a power of two, and iigiiz ~ 1.06.
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