
The Pumping Lemma for Context-Free
Languages is Undecidable

Hermann Gruber1, Markus Holzer2, and Christian Rauch2

1 Planerio GmbH, Theresienhöhe 11A, 80538 München
h.gruber@planerio.de

2 Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{holzer,christian.rauch}@informatik.uni-giessen.de

Abstract. Recently, the computational complexity of the Pumping-
Problem, that is, for a given finite automaton A and a value p, deciding
whether the language L(A) satisfies a previously fixed regular pumping
lemma w.r.t. the value p, was considered in [H. Gruber and M. Holzer
and C. Rauch. The Pumping Lemma for Regular Languages is Hard.
CIAA 2023, pp. 128-140.]. Here we generalize the Pumping-Problem by
investigating Bar-Hillel’s context-free pumping lemma instead. It turns
out that for context-free languages, the Pumping-Problem for Bar-
Hillel’s pumping lemma is undecidable. When restricted to regular lan-
guages, the problem under consideration becomes decidable.

1 Introduction

Since the beginning of automata and formal language theory, researchers have
studied pumping and iteration properties of formal languages to gain better in-
sights into the computational complexity and expressive power of various types
of language accepting or generating mechanisms. It is well known that not all
formal language families obey pumping properties as, e.g., context-sensitive or
Type-0 languages. Hence, satisfying a particular pumping property gives cer-
tain information about the structure of the language family, and is very often
used to show that a particular language does not belong to the language fam-
ily in question. For instance, Bar-Hillel’s lemma [3] applied to the language
L = { anbncn | n ≥ 0 } shows that this language is not context free. In fact,
the literature on pumping properties is far-reaching, with very different applica-
tions, see, e.g., [13], where language families are defined via pumping properties,
[20] with a focus on pumping with the additional requirement that repeating a
sub-word is allowed only if it is done a minimal number of times, or [15], which
investigates regular pumping of Turing machine languages and learnability, just
to mention a few.

We continue our research on the Pumping-Problem initiated in [7]. This
is the problem of deciding for an automaton A (or a grammar G, respectively)
and a value p, whether the language L(A) (the set L(G), respectively) satis-
fies a previously fixed pumping lemma w.r.t. the value p. For finite automata

and Kozen’s [16] and Jaffe’s [14] pumping lemmata for regular languages, it has
been shown that this problem is already intractable for DFAs, namely coNP-
complete—this is the case for both pumping lemmata. This is quite remarkable,
as it is a rare example of a finite automaton problem where the studied property
becomes intractable for a single deterministic device. Jaffe’s pumping property
turns out to be more complex for NFAs, namely PSPACE-complete, while for
Kozen’s lemma it is shown to be coNP-hard and contained in ΠP

2 for nondeter-
ministic finite state devices. Furthermore, analysis of these problems has led to
the conclusion that they are inapproximable unless the Exponential Time Hy-
pothesis (ETH) fails. Since regular languages also satisfy context-free pumping
lemmata, e.g., Bar-Hillel’s pumping lemma [3], the natural question is how com-
plicated it is to decide whether a regular or a context-free language satisfies a
given context-free pumping lemma w.r.t. the pumping parameter involved? This
is the starting point of the current paper.

Here we study the complexity of the Pumping-Problem for regular, linear
context-free, and context-free languages w.r.t. Bar-Hillel’s pumping lemma [3]
and its variants for regular [18] and linear context-free language [12]. Before
investigating these problems in detail, we present some basic properties of the
minimal pumping constants w.r.t. these pumping lemmata. It is shown that in
almost all cases the Pumping-Problem is undecidable, except when we con-
sider regular languages represented by finite automata or right-linear grammars,
where the problem becomes decidable. A more detailed analysis shows that
the Pumping-Problem for context-free languages w.r.t. Bar Hillel’s pumping
lemma is complete for the Π0

1 -level of the arithmetical hierarchy. Observe that
every language in Π0

1 is the complement of a recursively enumerable language.
A summary of the results obtained is given in Table 1.

Language Pumping w.r.t. value p

family regular (Lem. 3) linear context-free context-free (Lem. 1)

REG decidable

LIN
undecidable (Π0

1)
CFL

Table 1. Decidability status of the Pumping-Problem for different language families
and pumping lemmata.

The paper is organized as follows: in the next section we introduce the nec-
essary notations for context-free and regular languages and two special pumping
lemmata for these language families. One of these pumping lemmata is the well
known Bar-Hillel lemma [3] for context-free languages. The Pumping-Problem
is then studied. First, the relation between the pumping constants induced by
Bar-Hillel’s lemma and its variants for regular and linear context-free languages

2

is investigated. It is then shown that the Pumping-Problem for regular lan-
guages is decidable, for each of the pumping lemmata under consideration. We
conclude with a summary and topics for further investigation.

2 Preliminaries

We assume the reader to be familiar with the basic notions on grammars and
languages as contained in [12]. In particular, a context-free grammar (CFG) is
a 4-tuple G = (N,T, P, S), where N and T are disjoint alphabets of nontermi-
nals and terminals, respectively, S ∈ N is the axiom, and P is a finite set of
productions of the form A → α, where A ∈ N and α ∈ (N ∪ T)∗. As usual, the
transitive closure of the derivation relation ⇒G is written as ⇒∗

G. If there is no
danger of confusion, we simply write ⇒ (⇒∗, respectively) instead of ⇒G (⇒∗

G,
respectively). The language generated by G is defined as

L(G) = {w ∈ T ∗ | S ⇒∗
G w }.

We also consider the following restrictions of context-free grammars: (i) a
context-free grammar is said to be linear context-free (LIN) if the productions
are of the form A → α, where A ∈ N and α ∈ T ∗(N ∪ {ε})T ∗—here ε refers
to the empty word, and (ii) a context-free grammar is said to be right-linear or
regular (REG) if the productions are of the form A → α, where A ∈ N and
α ∈ T ∗(N ∪ {ε}).

The following pumping lemma for context-free languages can be found in [12,
page 125, Lemma 6.1] and is a variant of the well-known Bar-Hillel pumping
lemma [3, page 154, Theorem 4.1], see also [6, page 84, Lemma 3.1.1]. Observe
that the original Bar-Hillel pumping lemma uses two pumping constants, one
for the length of the word and the other for the sub-word that can be pumped.

Lemma 1. Let L be a context-free language over Σ. Then, there is a constant p
(depending on L) such that the following holds: If z ∈ L and |z| ≥ p, then there
are words u, v, w, x, y ∈ Σ∗ such that z = uvwxy, |vx| ≥ 1, |vwx| ≤ p, and
uvtwxty ∈ L for t ≥ 0—it is then said that v and x can be (simultaneously)
pumped in z.

For a context-free language L, let mpcf(L) denote the minimal number p
satisfying the conditions of Lemma 1. Let us give a small example:

Example 2. Let p ≥ 2. Consider the linear context-free grammar

Gp = (N,T, Pp, S)

with nonterminals N = {S}, terminals T = {a, b}, and the set of productions Pp

containing the rules
S → ap−1Sb | ε.

It is easy to see that Gp generates the language { an(p−1)bn | n ≥ 0 }. By in-
spection, the sub-words ap−1 and b can be pumped in any word of L(Gp), but

3

any shorter word cannot since otherwise the number of a’s and b’s is no longer
well correlated anymore. Hence, the minimal pumping constant w.r.t. Lemma 1
is equal to p. Thus, mpcf(Tp) = p, where Tp refers to the language generated by
the linear context-free grammar Gp. ⊓⊔

The previous example shows that already for linear context-free grammars,
with a single nonterminal, the minimal pumping constant can be arbitrarily large
w.r.t. Lemma 1. The pumping lemma for linear-context free languages reads like
the pumping lemma for context-free languages, but with one exception: instead
of |vwx| ≤ p, now the condition |uvxy| ≤ p is required—see [12, page 143,
Exercise 6.11]. For a linear context-free language L let mplin(L) denote the
minimal number p satisfying the conditions of the pumping lemma for linear
context-free languages. Note that mplin(Tp) = p holds.

When considering regular languages, we usually use finite automata instead of
right-linear grammars. A nondeterministic finite automaton (NFA) is a quintuple
A = (Q,Σ, · , q0, F), where Q is the finite set of states, Σ is the finite set of
input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states,
and the transition function · maps Q×Σ to 2Q. Here 2Q refers to the powerset
of Q. The language accepted by the NFA A is defined as

L(A) = {w ∈ Σ∗ | (q0 · w) ∩ F ̸= ∅ },

where the transition function is recursively extended to a mapping Q×Σ∗ → 2Q

in the usual way. An NFA A is said to be deterministic (DFA) if |q · a| = 1 for
all q ∈ Q and a ∈ Σ. In this case we simply write q · a = p instead of q · a = {p}.

The syntactic monoid for a given language L ⊆ Σ∗, is defined by the syntactic
congruence ≡L over Σ∗ where v1 ≡L v2 if and only if uv1w ∈ L ⇐⇒ uv2w ∈ L
for every u,w ∈ Σ∗. Then the syntactic monoid is the quotient monoid M(L) =
Σ∗/≡L, where the concatenation of equivalence classes [u]≡L

· [v]≡L
= [uv]≡L

serves as the monoid operation. The syntactic monoid of a regular language L is
the smallest monoid recognizing the language under consideration (with respect
to the division relation) and it is isomorphic to the transformation monoid of
the minimal deterministic finite automaton accepting L. Here a language L ⊆
Σ∗ is recognizable if and only if there exists a finite monoid M , a morphism
φL : Σ∗ → M , and a subset N ⊆ M such that L = φ−1

L (N), which in turn is
equivalent to the regularity (acceptance by a finite state machine) of L. For an
n-state DFA (NFA, respectively) the size of the syntactic monoid is at most nn

(2n
2

, respectively).
The pumping lemma for regular languages, which can be found in [18,

page 119, Lemma 8], [4, page 252, Folgerung 5.4.10], and [12, page 56,
Lemma 6.1], reads as follows:

Lemma 3. Let L be a regular language over Σ. Then there is a constant p
(depending on L) such that the following holds: If w ∈ L and |w| ≥ p, then there
are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ p, and
xytz ∈ L for t ≥ 0. It is said that y can be pumped in w.

4

Similarly to context-free languages, for a regular language L let mpl(L) denote
the smallest number p that satisfies the above statement. A more relaxed version
of the previous lemma can be found in [16, page 70, Theorem 11.1], where the
condition |xy| ≤ p is not required. We call this variant Kozen’s pumping lemma.
Obviously, Lemma 3 implies Kozen’s pumping lemma. For a regular language L,
the smallest value p that satisfies Kozen’s pumping lemma is denoted mpc(L).
Then we have

mpc(L) ≤ mpl(L) ≤ sc(L),

where sc(L) is the number of states of the minimal deterministic finite automa-
ton (DFA) accepting L, as shown in [5]. For further properties of mpc and mpl,
see [5, 7, 10, 11].

3 The Language-Pumping-Problem

Recently in [7], the computational complexity of the pumping problem for regular
languages w.r.t. Jaffe’s [14] and Kozen’s [16] pumping lemmata was investigated.
It turned out that this problem is already intractable for DFAs and becomes
PSPACE-complete for NFAs. Both pumping lemmata don’t require any upper
bound on the length of the pumped sub-word v or uv in z = uvw. The problem
under consideration is defined as follows:

Language-Pumping-Problem or for short Pumping-Problem:
Fixed: Particular pumping lemma, such as Lemma 1.
Input: an accepting or generating device A for a formal language family

such as, e.g., the regular languages, and a natural number p, i.e., an
encoding ⟨A, 1p⟩.

Output: Yes, if and only if the statement from a previously fixed pumping
lemma holds for the language L(A) w.r.t. the value p.

Thus, the Language-Pumping-Problem is a natural host for different problem
variants by considering different pumping lemmata and different formal language
families. Here, we are particularly interested in the family of regular and context-
free languages and some of their pumping lemmata as mentioned above.

Before investigating these problems in detail, we present some simple prop-
erties of the minimal pumping constants w.r.t. Lemma 1 and 3.

Theorem 4. Let L be a regular language. Then mpcf(L) ≤ mpl(L) and more-
over mplin(L) ≤ mpl(L).

Proof. We only prove the first relation mpcf(L) ≤ mpl(L), which is immediate,
because any pumpable decomposition of a word z w.r.t. Lemma 3 can be read
as a pumpable decomposition w.r.t. Lemma 1. To this end consider a pumpable
decomposition of z = uvw with |uv| ≤ mpl(L) and |v| ≥ 1 according to Lemma 3.
Then define u′ = u, v′ = v, w′ = ε, x′ = ε, and y′ = w. Obviously z = u′v′w′x′y′

and is a valid pumpable decomposition w.r.t. Lemma 1. This proves the stated
claim. ⊓⊔

5

Recall, that from [5] is known that mpl(L) ≤ sc(L), for any regular lan-
guage L. Here sc(L) can be replaced by nsc(L) as mentioned in [7]. For context-
free languages we find the following situation, which follows from the proof of
the pumping lemma given in [8, Chapter 6]:

Theorem 5. Let L be generated by the context-free grammar G = (N,T, P, S).
Set n := |N | and m := max{ 2, |α| | A → α ∈ P }, then mpcf(L) ≤ m2n+3. ⊓⊔

If the given context-free grammar is in Chomsky normal form,3 the proof
in [12] yields the bound mpcf(L) ≤ 2n. Notice, however, that the conversion to
normal form incurs a size blow-up in the worst case [17]. For linear context-free
languages, the next theorem applies:

Theorem 6. Let L be a linear context-free language generated by the linear
context-free grammar G = (N,T, P, S). Set n := |N | and similarly as above
define m := max{ |α| | A → α ∈ P }, then mplin(L) ≤ (m− 1) · n+ 2.

Proof. Consider a derivation S ⇒∗ z of G generating a word z ∈ L, with |z| ≥
(m− 1) · n+ 2. (In case there is no such word z, then the pumping condition is
trivially satisfied). Observe that the derivation must have at least n + 1 steps:
the last derivation step can generate at most m terminal symbols, and every
other derivation step can generate at most m−1 terminal symbols each. Within
n steps, the grammar G can thus generate only terminal words of length at most
(m− 1)n+ 1 < |z|.

We find a decomposition z = uvwxy that meets the needs as follows. Let A
denote the first variable in the derivation that appears twice. Then the derivation
can be written as

S ⇒∗ uAy ⇒∗ uvAxy︸ ︷︷ ︸
≤n+1 steps

⇒∗ uvwxy.

Then uvAxy is generated in at most n + 1 steps, each of which generates one
variable and at most m− 1 terminal symbols, hence |uvxy| ≤ (m− 1)(n+1). In
case |vx| = 0, we can cut out the part uAy ⇒∗ uvAxy from the derivation and
recursively find a suitable decomposition for the shorter derivation. Finally, it is
immediate that A ⇒∗ viAxi for all i ≥ 0, so z = uvwxy is a decomposition with
the desired properties. This proves the stated upper bound. ⊓⊔

The relation between mpcf(L) and mplin(L) for regular and linear context-
free languages L is subject to further research.

3.1 Decidability of Context-Free Pumping for Regular Languages

The main result of this section is that the pumping problem for regular languages
w.r.t. Lemma 1 is decidable. The statement reads as follows:

3 A context-free grammar G = (N,T, P, S) is in Chomsky normal form if every pro-
duction is either of the form A → a or A → BC or S → ε, for A,B,C ∈ N and
a ∈ T .

6

Theorem 7. Given a finite automaton A and a natural number p, it is decidable
whether for the language L(A) the statement of Lemma 1 holds for the value p.

Before we come to the proof of this result, let us take a closer look at the
pumping lemma for regular languages, as stated in Lemma 3.

Theorem 8. Let L be a regular language over Σ that is accepted by an n-state
finite automaton and p ≤ n. If for every w ∈ L with p ≤ |w| ≤ n + |M(L)|,
there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ p, and
xytz ∈ L for t ≥ 0, then Lemma 3 is satisfied w.r.t. the value p.

Proof. It suffices to show that for every word w with |w| > n + |M(L)| there
are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz, |xy| ≤ p, and
xytz ∈ L for t ≥ 0. Since |xy| ≤ p and p ≤ n, by assumption the pumping of y
only appears in the prefix of length at most n of w. Hence we decompose w
into w = uv such that |u| = n and replace v by the shortest word v′ that is
equivalent w.r.t. the syntactic monoid of L, i.e., φL(v

′) = φL(v) for the syntactic
morphism φL : Σ∗ → M(L) and there is no shorter word than v′ that satisfies
the above equality. Then uv′ is of length at most n+ |M(L)| and

w = uv ∈ L ⇐⇒ uv′ ∈ L.

By the precondition of the implication there are words x ∈ Σ∗, y ∈ Σ+, and
z ∈ Σ∗ such that uv′ = xyz, |xy| ≤ p, and xytz ∈ L for t ≥ 0. By construc-
tion xy entirely lies within u, while z may contain letters from the right end of u
followed by the whole word v′. Thus, we can write z = z1z2 with z1 = (xy)−1u
and z2 = v′. But then we can use this decomposition to construct a y-pumpable
decomposition for the original word w we started from, by using the words x, y,
and z1v without changing the acceptance of the word

xytz = xytz1z2 ∈ L ⇐⇒ xytz1v ∈ L,

for t ≥ 0, because z2 = v′ and v belong to the same equivalence class w.r.t. the
syntactic congruence ≡L of the language L. ⊓⊔

With the help of the previous theorem we can now show that the regular
pumping-problem for regular languages is decidable.

Theorem 9. Given a finite automaton A and a natural number p, it is decidable
whether for the language L(A) the statement of Lemma 3 holds for the value p.

Proof. Let n be the number of states of the automaton A. A Turing machine M
that decides the problem in question works as follows: first M constructs a
list of all words of length at least p and at most n + 2n

2

, that belong to the
language L(A). Observe that nn ≤ 2n

2

and therefore |M(L)| ≤ 2n
2

holds. If
this list is empty, then the Turing machine halts and accepts, because in this
case L(A) is a finite language, whose longest word is shorter than p. Next assume
that the constructed list is not empty. Then M cycles through all words z in the

7

list and tries to find a valid decomposition z = uvw according to Lemma 3 with
value p such that v can be pumped in z. If the machine M does not find such
a decomposition it halts and rejects. Otherwise it continues with the next word
in the list. In case there is no next word in the list, that is, by cycling trough all
words in the list M has found a p-length valid pumpable decomposition of each
word, the Turing machine halts and accepts, since by Theorem 8 the problem
instance requires a positive answer. ⊓⊔

The proof of Theorem 9 relies heavily on Theorem 8, which does not obviously
generalize to context-free pumping lemmata, because the simultaneous pumping
of sub-words (context-free pumping) can occur at any position in a given word—
and not necessarily only in a prefix of bounded length, as it does for the regular
pumping lemma in question (Lemma 3). Thus, proving that the context-free
pumping problem for regular languages is decidable requires a different proof
strategy, which we develop in the next proof.

Proof (of Theorem 7). Recall, that A is a finite automaton with input alpha-
bet Σ. Let p be natural number. We want to decide whether Lemma 1 holds
for the regular language L(A) with value p. First let us take a closer look at
word decompositions used in Lemma 1 with value p when applied to a regular
language. Let L := L(A) and z be any word in L (not necessarily of length at
least p). Any decomposition of z into u, v, w, x, y ∈ Σ∗ such that z = uvwxy,
|vx| ≥ 1, |vwx| ≤ p, and uvtwxty ∈ L for t ≥ 0, can be described by a five-tuple

(u′, v, w, x, y′),

where u′ (respectively y′) is any representative for the Myhill-Nerode equivalence
class [u′]≡L

(respectively [y′]≡L
). For such a 5-tuple (induced by a word z and its

decomposition), it is easy to see that any word z′ with the property z′ ∈ [u′]≡L
·

vwx · [y′]≡L
, obeys a v-x-pumpable decomposition z′ = uvwxy with u ∈ [u′]≡L

and y ∈ [y′]≡L
satisfying |vx| ≥ 1 and |vwx| ≤ p such that uvtwxty ∈ L

for t ≥ 0. Observe that the representatives of the equivalence classes in the first
and last component can be chosen as a word of length at most 2n

2

each, because
the syntactic monoid has at most 2n

2

elements. If this is the case, we call the
corresponding five-tuple valid.

Let DL,p refer to the set of all valid five-tuples. It is easy to see that member-
ship in DL,p is decidable. On input (u, v, w, x, y) a Turing machine first verifies

the length requirements on these words, i.e., |u|, |y| ≤ 2n
2

, |vwx| ≤ p, and
|vx| ≥ 1. If the length requirements are fulfilled, then for the linear-context-free
grammar G = ({S,A}, Σ, P, S) with the production set P = {S → uAy,A →
vAx | w }, which generates the language {uvtwxty | t ≥ 0 }, it is verified whether
L(G) ⊆ L holds. This can be done by checking L(G)∩L for being empty. If this
is the case, the Turing machine halts and accepts the input (u, v, w, x, y). Oth-
erwise, the Turing machine halts and rejects. Here L refers to the complement
of L, i.e., L := Σ∗ \ L. Since all the necessary checks on the linear context-
free grammar G described above can be decided, the whole algorithm decides
membership in DL,p.

8

Next we construct an NFA for the language

P :=
⋃

(u,v,w,x,y)∈DL,p

[u]≡L
· vwx · [y]≡L

.

This can be easily done by cycling through all elements of DL,p. It is easy to
see that P describes all words in L that can be pumped according to Lemma 1
w.r.t. the value p. Finally we build an automaton for the language L \ P . Then
we consider two cases:

1. L \ P contains a word w of length at least p. Then the pumping lemma for
context-free languages (Lemma 1) w.r.t. the value p does not hold for L.
This is witnessed by w. Hence, the input A and p has to be rejected.

2. L \ P does not contain any word of length at least p. Then the pumping
lemma for context-free languages w.r.t. the value p holds for L. Therefore
the input A and p is accepted.

Since all constructions rely on basic operations on regular languages that can
be done by a Turing machine, the problem in question is decidable. This proves
the stated claim. ⊓⊔

With the idea used in the previous proof one can also show the following
decidability result for linear context-free pumping on regular languages.

Theorem 10. Given a finite automaton A and a natural number p, it is de-
cidable whether for the language L(A) the statement of the pumping lemma for
linear context-free languages holds for the value p. ⊓⊔

3.2 Undecidability of Context-Free Pumping for Context-Free
Languages

In contrast to the previous section, where it was shown that the Pumping-
Problem is decidable if we use the pumping lemmata under consideration on
regular languages, here we show that the Pumping-Problem becomes unde-
cidable if we consider context-free languages. In fact, the undecidability al-
ready holds for linear-context-free languages. To this end, we exploit non-semi-
decidable properties of Turing machines by encoding complex Turing machine
computations into small grammars [9].

Basically, we consider valid computations of Turing machines. Roughly speak-
ing, these are histories of accepting Turing machine computations. It suffices to
consider deterministic Turing machines with one single tape and one single read-
write head. Without loss of generality and for technical reasons, we assume that
the Turing machine accepts by halting and cannot print blanks. A valid compu-
tation is a string built from a sequence of configurations passed through during
an accepting computation. To be more precise, let Q be the state set of some
Turing machine M , where q0 is the initial state, T is the tape alphabet contain-
ing the blank symbol satisfying T ∩ Q = ∅, and Σ ⊆ T is the input alphabet.

9

Then a configuration of M can be written as a word of the form T ∗QT ∗ such
that a1a2 · · · aiqai+1 · · · an is used to express that M is in state q, scanning tape
symbol ai+1, and a1, a2 to an is the support of the tape inscription.

Let VAL(M) be the set of all words of the form

w1$w
R
2 $w3$w

R
4 $ · · · $w2k−1$ or w1$w

R
2 $w3$w

R
4 $ · · · $wR

2k$

where $ is a new symbol not contained in T ∪ Q, sub-words wi ∈ T ∗QT ∗

are configurations of M , word w1 is an initial configuration of the form q0Σ
∗,

word w2k−1 (w2k, respectively) is a halting configuration, i.e., accepting configu-
ration, and wi+1 is the successor configuration of wi. The set of all invalid compu-
tations INVAL(M) is the complement of VAL(M) w.r.t. the alphabet T ∪Q∪{$}.
From [9] it is known, that a linear context-free grammar generating the language
INVAL(M) can be effectively constructed from a description of M .

It is worth mentioning that mpcf(INVAL(M)) = 1 holds. This is quite surpris-
ing, but due to the fact, that whenever the word under consideration contains
the encoding of a state, then this state can be pumped without changing the
membership of the pumped word. If there is no state in the considered word,
then we pump any single letter that, which the pumped string within the lan-
guage INVAL(M). Nevertheless, we will use a particular encoding of INVAL(M)
for our purpose to show that the Pumping-Problem becomes undecidable if
one considers context-free languages and their pumping lemma.

Theorem 11. Given a context-free grammar G and a natural number p, it is
undecidable whether for the language L(G) the statement of Lemma 1 for the
value p holds. The statement remains valid if a linear context-free grammar and
the pumping lemma for linear-context-free languages is considered instead.

Proof. We only prove the statement for the context-free pumping case (on a
linear context-free language). The proof for the linear context-free case is similar
and is left to the interested reader.

The emptiness problem for Turing machines, which is undecidable, is reduced
to the problem in question. Let M be a Turing machine. Recall, that L(M) = ∅ if
and only if INVAL(M) = Σ∗, for some alphabet Σ that depends on M . Without
loss of generality we assume that Σ contains the letters a and b.

Let p ≥ 2 and Tp ⊆ {a, b}∗ be a regular language satisfying mpcf(Tp) = p.
Consider the language

LM = h(Σ∗) ·# · Tp ∪ h(INVAL(M)) ·# ·Σ+ ∪Σ∗# ∪#∗,

where # is a new symbol not contained in Σ and h : Σ → Σ∗ is the homo-
morphism defined by h(a) = a2, for a ∈ Σ. It is not hard to see that one can
construct a linear context-free grammar for the language LM—the details are
omitted.

Next we show how to decide the emptiness problem for Turing machines
using the linear-context free grammar GM that generates LM . First observe
that whenever we have a word from the sub-languages Σ∗# or #∗, respectively,

10

then such a word can be pumped by using a single letter from Σ, or by using
the symbol #, respectively. Thus for those words, the pumping constant can
be chosen to be 1. It remains to consider the words from the remaining two
sub-languages. To this end we consider two cases:

1. If L(M) = ∅, then INVAL(M) = Σ∗. This implies that

LM = h(Σ∗) ·# ·Σ+ ∪Σ∗# ∪#∗,

and any word u#w from the sub-language h(Σ∗) ·# ·Σ+ can be pumped by
any single letter from w, even if the word w consists of only a single letter.
By the above argumentation we conclude that the pumping constant for the
whole language LM can be chosen to be p = 1.

2. Otherwise, let L(M) ̸= ∅. Regardless of the assumption, note that any non-
empty word in h(INVAL(M)) · # · Σ+ can be pumped by any single letter
that appears after the #-symbol. Thus, for these words we can choose the
pumping constant p = 1.
It remains to consider the words in h(Σ∗) ·# ·Tp that are not covered by the
set h(INVAL(M))·#·Σ+. Since by assumption we have L(M) ̸= ∅, there is at
least one word u = h(u′) such that u′ does not belong to INVAL(M). Next we
consider the word u#w, for a non-empty word w ∈ Tp such that w is a witness
for mpcf(Tp) = p, i.e., any context-free pumping within w requires the length
of the simultaneously pumped words (both together) are of length p. The
word u#w can be properly pumped as follows:
(a) If the pumping appears entirely in the sub-word u, then the total length

of the simultaneously pumped words is even, since otherwise the length
constraint being of even length is not satisfied for the prefix up to the
#-symbol. Hence the minimal pumping constant is at least 2.

(b) The pumping appears entirely in the sub-word w, which is a member
of Tp and a witness for mpcf(Tp) = p. Hence, the pumping constant for
u#w must be chosen to be at least p. By assumption p ≥ 2.

(c) Finally, the pumping appears in both u and w—note that the #-symbol
can not be part of any word for pumping. Here we exclude the minimal
pumping constant 1, which implies that minimal pumping constant is at
least 2. If the length of the simultaneously pumped word is 1, then either
the pumped sub-word in u or w is empty. In both cases, pumping of a
single letter is not possible, because either the length constraint being of
even length is not satisfied for the prefix up to the #-symbol or the suffix
doesn’t belong to Tp anymore, since w was a witness for mpcf(Tp) = p,
for p ≥ 2. Thus, in this case the minimal pumping constant is at least 2.

Summarizing, in all sub-cases the minimal pumping constant is at least 2.

Thus, the case analysis shows we can decide whether L(M) is empty or not by
checking whether for the linear context-free grammar GM that generates the
language LM the Bar-Hillel pumping lemma is satisfied w.r.t. the value p = 1.
If this is the case, then L(M) = ∅. Otherwise, the Turing machine M accepts at
least one word and thus its language is non-empty. This proves the stated claim

11

on the undecidability of the Bar-Hillel pumping lemma applied to context-free
languages. ⊓⊔

We can reuse the proof for Theorem 11 to prove the following statement for
regular pumping.

Theorem 12. Given a context-free grammar G and a natural number p ≥ 3, it
is undecidable whether for the language L(G) the statement of Lemma 3 for the
value p holds. The statement remains valid if a linear context-free grammar is
considered, or the constraint |xy| ≤ p is no longer a prerequisite.

Proof. First we argue about the case where |xy| ≤ p is not required for a decom-
position regarding Lemma 3. We observe that dropping the length constraint
implies that we can pump a word w ∈ L which fulfills |w| ≥ p if it can be de-
composed into xyz for any words x, y, z ∈ Σ such that |y| ≥ 1 and xytz ∈ L
for t ≥ 0. We refer to the minimal constant p fulfilling this statement for a
language L by mpc(L).

By inspecting the cases of the proof of Theorem 11 we obtain that in the
case L(M) = ∅ we have mpc(L) = 1 and in the case L(M) ̸= ∅ we get mpc(L) ≥ 2.
Therefore the statement of this theorem follows for the variant of Lemma 3.
Unfortunately we obtain for the original version of the lemma that mpl(LM) =
2 regardless of whether L(M) ̸= ∅ or not. Therefore we use a variant of the
language LM instead by reversing the concatenations but not the individual
languages. Let

L′
M = Tp ·# · h(Σ∗) ∪Σ+ ·# · h(INVAL(M)) ∪# ·Σ∗ ∪#∗.

Then we consider two cases:

1. If L(M) = ∅, then INVAL(M) = Σ∗ and we get that every word w in the
language

L′
M = Σ+ ·# · h(Σ∗) ∪# ·Σ∗ ∪#∗,

can be pumped by its first letter except the words in # ·Σ∗. All these words
allow pumping by their second letter. Therefore mpl(L′

M) = 2 in this case.
2. For L(M) ̸= ∅ there exists a word w#u ∈ Tp · # · h(Σ∗) such that w is a

witness for mpl(Tp) = p and u = h(u′) with u′ /∈ INVAL(M). Without loss of
generality we assume that |w| ≥ p− 1 and u ̸= λ. Pumping w.r.t. Lemma 3
inside the prefix of length p−1 of w results in a word x#u such that x /∈ Tp.
This implies that x#u /∈ LR

M since u /∈ h(INVAL(M)). Hence, we obtain
mpl(LR

M) ≥ p in the case that L(M) ̸= ∅.

Therefore we obtain that for a linear context-free grammar it is undecidable
whether the statement of Lemma 3 holds for a given value p. ⊓⊔

3.3 More on Context-Free Pumping for Context-Free Languages

As mentioned above, it is undecidable whether for a given context-free gram-
mar G and a value p the Bar-Hillel’s pumping w.r.t. the value p is satisfied.

12

So, we are interested to explore how hard the problem is. Is it semi-decidable
or is it placed at a higher degree of unsolvability? To this end, we consider the
arithmetic hierarchy, which is defined as follows—see, e.g., [19]:

Σ0
1 = {L | L is recursively enumerable },

Σ0
n+1 = {L | L is recursive enumerable in some A ∈ Σ0

n },

for n ≥ 1. Here a language L is said to be recursively enumerable in some B
if there is a Turing machine with oracle B that semi-decides L. Here Π0

n is the
complement of Σ0

n, i.e., Π
0
n = {L | L is in Σ0

n }. Observe that the intersection
Σ0

1 ∩Π0
1 is the class of all recursive sets. Completeness and hardness are always

meant with respect to many-one reducibilities.
A well-known Π0

1 -complete problem, which we will refer to, is the empti-
ness problem for Turing machines [19], denoted by EMPTY. Here EMPTY =
{ ⟨M⟩ | L(M) = ∅ }, where ⟨M⟩ is the index, or Gödel number, of M . As usual,
EMPTY denotes the complement of EMPTY, which is Σ0

1 -complete. In fact, both
problems are related to the Pumping-Problem in question. Recall the proof of
Theorem 11. There we reduced the problem EMPTY to the Pumping-Problem
for context-free languages w.r.t. Bar Hillel’s lemma by

⟨M⟩ ∈ EMPTY if and only if ⟨GM , 1⟩ is a positive instance of the
Pumping-Problem w.r.t. Bar Hillel’s lemma,

where GM generates the language LM described in proof of Theorem 11. Thus,
we can state the following result:

Lemma 13. The EMPTY-problem reduces to the Pumping-Problem for con-
text-free languages w.r.t. Bar Hillel’s pumping lemma via a many-one reduction.

⊓⊔

In order to show Π0
1 -completeness it remains to show that the Pumping-

Problem for context-free languages w.r.t. Lemma 1 is contained in Π0
1 . This is

shown next—compare with [15]:

Lemma 14. Given a context-free grammar G and a natural number p, it belongs
to Π0

1 to check whether for the language L(G) the statement of Lemma 1 for the
value p holds, i.e., the problem is co-recursively enumerable.

Proof. The encoding ⟨G, p⟩ is a negative instance of the Pumping-Problem
w.r.t. Bar Hillel’s lemma if and only if there exists a word z of length at least p,
with z ∈ L(G), such that for each 5-tuple of words (u, v, w, x, y) with

1. z = uvwxy,
2. |vwx| ≤ p, and |vx| ≥ 1

there exists an integer i such that uviwxiy is not in L(G).
We find it easier to describe a nondeterministic Turing machine which accepts

all negative instances. To begin Turing machine nondeterministically guesses a

13

word z of length at least p, and verifies that z ∈ L(G) using the well-known
CYK’s algorithm. If this is not the case, the Turing machine immediately rejects
on this computation path. Then it generates a list of all 5-tuples (u, v, w, x, y) of
words which constitute a decomposition z = uvwxy and satisfy both |vwx| ≤ p
and |vx| ≥ 1. For each of these decompositions, the machine guesses a nonnega-
tive integer i, and verifies that uviwxiy ̸∈ L. If this is not the case, the machine
immediately rejects on this computation path. After all such decompositions are
verified, the Turing machine accepts on this computation path.

It is clear from the above description that an accepting computation wit-
nesses the existence of a word z of length at least p with z ∈ L(G), such that
each p-admissible decomposition of z can be pumped to a word not in L(G). Con-
versely, from a given word z of length at least p in L(G) and a list of exponents
i1, i2, . . . , ij , . . ., such that for each admissible decomposition w = ujvjwjxjyj
the pumped word ujvj

ijwjxj
ijyj is not in L(G), we can construct an accepting

computation of the nondeterministic Turing machine described above.
Since there is a nondeterministic Turing machine which halts exactly on the

negative instance of the Pumping-Problem w.r.t. Bar Hillel’s lemma, we can
see that the set of positive instances is co-semidecidable, and thus in Π0

1 . ⊓⊔

In summary, we have obtained the following result:

Theorem 15. Given a context-free grammar G and a natural number p to check
whether for the language L(G) the statement of Lemma 1 for the value p holds.
is Π0

1 -complete. ⊓⊔

4 Conclusion

In this paper, we continued our research on the Pumping-Problem, recently
started in [7]. Here we focused on Bar-Hillel’s pumping lemma for context-
free languages and its variants. It turned out that the Pumping-Problem for
context-free languages w.r.t. Bar-Hillel’s lemma is undecidable and complete for
the level Π0

1 of the arithmetical hierarchy. It remains undecidable even if regular
pumping is considered. On the other hand, context-free pumping becomes de-
cidable if the underlying language family is regular. This result relies heavily on
the congruence representation of regular languages. Whether this result can be
extended to other language families that allow for some congruence representa-
tion, such as the family of visibly pushdown languages [1, 2], is subject of further
research. Furthermore, for the decidable variants of the problem, it remains to
consider their computational complexity, which would nicely complement our
previous investigations mentioned above.

References

1. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,

14

Yung, M. (eds.) Proceedings of the 32nd International Colloquim Automata, Lan-
guages and Programming. pp. 1102–1114. No. 3580 in LNCS, Springer, Lisbon,
Portugal (2005)

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), Art.
16 (2009)

3. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung 14, 143–177 (1961)

4. Brauer, W.: Automatentheorie: Eine Einführung in die Theorie endlicher Auto-
maten. Leitfäden und Monographien der Informatik, Teubner Stuttgart (1984).
https://doi.org/10.1007/978-3-322-92151-2, (in German)

5. Dassow, J., Jecker, I.: Operational complexity and pumping lemmas. Acta Inform.
59, 337––355 (2022). https://doi.org/10.1007/s00236-022-00431-3

6. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill
(1966)

7. Gruber, H., Holzer, M., Rauch, C.: The pumping lemma for regular languages
is hard. In: Nagy, B. (ed.) Proceedings of the 27th International Conference on
Implementation and Application of Automata. pp. 128–140. No. 14151 in LNCS,
Springer, Famagusta, Cyprus (2023). https://doi.org/10.1007/978-3-031-40247-0˙9

8. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley (1978)
9. Hartmanis, J.: Context-free languages and Turing machine computations. In: Pro-

ceedings of Symposia in Applied Mathematics. vol. 19, pp. 42–51. American Math-
ematical Society, Providence, Rhode Island (1967)

10. Holzer, M., Rauch, C.: On Jaffe’s pumping lemma, revisited. In: Bordihn, H., Tran,
N., Vaszil, G. (eds.) Proceedings of the 25th International Conference on Descrip-
tional Complexity of Formal Systems. pp. 65–78. No. 13918 in LNCS, Springer,
Potsdam, Germany (2023). https://doi.org/10.1007/978-3-031-34326-1˙5

11. Holzer, M., Rauch, C.: On minimal pumping constants for regular languages. In:
Gazdag, Z., Iván, S., Kovásznai, G. (eds.) Proceedings of the 16th International
Conference on Automata and Formal Languages. pp. 127–141. No. 386 in EPTCS,
Eger, Hungary (2023). https://doi.org/10.4204/EPTCS.386.11

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

13. Horváth, S.: The family of languages satisfying Bar-Hillel’s lemma. RAIRO–
Informatique théorique et Applications / Theoretical Informatics and Applications
12(3), 193–199 (1978)

14. Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT
News 10(2), 48–49 (Sommer 1978). https://doi.org/10.1145/990524.990528

15. Kalociński, D.: On computability and learnability of the pumping lemma function.
In: Dediu, A.H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.L., Truthe, B. (eds.) Pro-
ceedings of the 8th International Conference Language and Automata Theory and
Applications. pp. 433–440. No. 8370 in LNCS, Springer, Madrid, Spain (2014)

16. Kozen, D.C.: Automata and Computability. Undergraduate Texts in Computer
Science, Springer (1997). https://doi.org/10.1007/978-1-4612-1844-9

17. Lange, M., Leiß, H.: To CNF or not to CNF? An efficient yet presentable version
of the CYK algorithm. Informatica Didactica 8 (2009)

18. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959). https://doi.org/10.1147/rd.32.0114

19. Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability. Higher
Mathematics, McGraw-Hill (1967)

15

20. Sommerhalder, R.: Classes of languages proof against regular pumping. RAIRO–
Informatique théorique et Applications / Theoretical Informatics and Applications
14(2), 169–18 (1980)

16

