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Abstract. This paper complements a recent inapproximability result
for the minimal pumping constant w.r.t. a fixed regular pumping lemma
for nondeterministic finite automata [H. Gruber and M. Holzer and
C. Rauch. The Pumping Lemma for Regular Languages is Hard. CIAA
2023, pp. 128-140.], by showing the inapproximability of this problem
even for deterministic finite automata, and at the same time proving
stronger lower bounds on the attainable approximation ratio, assuming
the Exponential Time Hypothesis (ETH). To that end, we describe those
homomorphisms that, in a precise sense, preserve the respective pump-
ing arguments used in two different pumping lemmata. We show that,
perhaps surprisingly, this concept coincides with the classic notion of
star height preserving homomorphisms as studied by McNaughton, and
by Hashiguchi and Honda in the 1970s. Also, we gain a complete un-
derstanding of the minimal pumping constant for bideterministic finite
automata, which may be of independent interest.

1 Introduction

The investigation of combinatorial properties and decision problems dates back
to the very early days of automata and formal language theory. One of the
most well known combinatorial properties that are satisfied by context-free and
regular languages are pumping or interchange lemmata. For regular languages
one finds, e.g., the following pumping lemma in Kozen’s monograph on automata
and computability—the lemma describes a necessary condition for languages to
be regular [15, page 70, Theorem 11.1].

Lemma 1. Let L be a regular language over Σ. Then, there is a constant p
(depending on L) such that the following holds: If w ∈ L and |w| ≥ p, then
there are words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and xytz ∈ L
for t ≥ 0—it is then said that y can be pumped in w.



A lesser-known pumping lemma, attributed to Jaffe [14], characterizes the
regular languages, by describing a necessary and sufficient condition for lan-
guages to be regular. For other pumping lemmata see, e.g., the annotated bibli-
ography on pumping [18]:

Lemma 2. A language L is regular if and only if there is a constant p (depend-
ing on L) such that the following holds: If w ∈ Σ∗ and |w| = p, then there are
words x ∈ Σ∗, y ∈ Σ+, and z ∈ Σ∗ such that w = xyz and3

wv = xyzv ∈ L ⇐⇒ xytzv ∈ L

for all t ≥ 0 and each v ∈ Σ∗.

These lemmata are part of the automata and formal language standard tool-
box and their combinatorial properties are well understood. But what about
their computational properties? Recently this question was answered in [8] by
studying the Pumping-Problem for finite automata. This is, given a finite au-
tomaton A and a value p, does the statement of Lemma 1 (or alternatively of
Lemma 2) hold for the language L(A) w.r.t. the value p? It turned out that
this problem is already intractable for DFAs, i.e., coNP-complete, regardless of
whether we check for the pumping property described by Kozen [15] or Jaffe [14].
This is quite remarkable since it is a rare example of a finite automaton problem
where already, for a single device, the studied property becomes intractable. The
latter pumping property is more complex for NFAs, namely PSPACE-complete,
while the former is shown to be coNP-hard and contained in ΠP

2 , the second
co-level of the polynomial hierarchy, for nondeterministic finite state devices.
Moreover, for NFAs also an inapproximability result was shown for both pump-
ing properties unless the Exponential Time Hypothesis (ETH) fails. Whether
one can come up with a similar inapproximability result for DFAs was left open,
and this is also the starting point of this research.

The exponential time hypothesis—roughly speaking this is an unproven com-
putational hardness assumption which states [13] that the satisfiability of n vari-
able 3-SAT cannot be solved in sub-exponential time 2o(n)—, as well as related
assumptions which are stronger than P ̸= NP, emerged as a swiss-army knife,
which allows for a fine-grained analysis of NP-hard problems. To name a few, it
helps to gauge the inherent limits of approximability beyond polynomial time,
as well as those of parameterized and exact exponential algorithms [3]. In recent
years, numerous algorithmic impossibility results based on the ETH and related
hypotheses have been derived [16, 21], more recently also for problems related to
finite automata and regular expressions, see, e.g., [4, 6, 9].

The main result of the present paper is an inapproximabilty bound for de-
terministic finite automata for both pumping properties unless ETH fails. This
supersedes the previous inapproximability result for NFAs from [8]. The ingredi-
ents for this result are (i) a notion we call pumping preserving homomorphism,

3 Observe that the words w = xyz and xytz, for all t ≥ 0, belong to the same Myhill-
Nerode equivalence class of the language L. Thus, one can say that the pumping of
the word y in w respects equivalence classes.
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which allows a binary encoding of the problem and (ii) a non-trivial relation be-
tween the longest path problem on directed graphs and minimal pumping con-
stants for the two pumping lemmata mentioned above. These two ingredients
allow for a reduction from the inapproximability of the longest path problem on
directed graphs [2] to the Pumping-Problem for binary regular languages un-
less P = NP. Also, assuming ETH, which is a stronger assumption than P ̸= NP,
it cannot be approximated in polynomial time within an even higher factor.
The obtained inapproximability bounds significantly outperform the previously
known bounds from [8] for NFAs. Due to space constraints, all proofs can be
found in the full version of this paper.

2 Preliminaries

Next we fix some definitions on finite automata—cf. [10]. A nondeterministic
finite automaton (NFA) is a quintuple A = (Q,Σ, · , q0, F ), where Q is the finite
set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and the transition function · maps Q × Σ to 2Q.
Here 2Q refers to the powerset of Q. The language accepted by the NFA A is
defined as L(A) = {w ∈ Σ∗ | (q0 · w) ∩ F ̸= ∅ }, where the transition function is
recursively extended to a mapping Q×Σ∗ → 2Q in the usual way. An NFA A is
said to be partial deterministic if |q ·a| ≤ 1 and deterministic (DFA) if |q ·a| = 1
for all q ∈ Q and a ∈ Σ. In these cases, we simply write q · a = p instead of
q · a = {p}. Note that every partial DFA can be made complete by introducing
a non-accepting sink state that collects all non-specified transitions. For a DFA,
obviously every letter a ∈ Σ induces a mapping from the state set Q to Q by
q 7→ q · a, for every q ∈ Q. Finally, a finite automaton is unary if the input
alphabet Σ is a singleton set, that is, Σ = {a}, for some input symbol a.

The deterministic state complexity of a finite automaton A with state set Q
is referred to as sc(A) := |Q| and the deterministic state complexity of a regular
language L is defined as

sc(L) = min{ sc(A) | A is a DFA accepting L, i.e., L = L(A) }.

A similar definition applies for the nondeterministic state complexity of a regular
language by changing DFA to NFA in the definition, which we refer to as nsc(L).
It is well known that

nsc(L) ≤ sc(L) ≤ 2nsc(L),

for every regular language L.
A finite automaton is minimal if its number of states is minimal with respect

to the accepted language. It is well known that each minimal DFA is isomorphic
to the DFA induced by the Myhill-Nerode equivalence relation. The Myhill-
Nerode equivalence relation ∼L for a language L ⊆ Σ∗ is defined as follows: for
u, v ∈ Σ∗ let u ∼L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗. The
equivalence class of u is referred to as [u]L or simply [u] if the language is clear
from the context and it is the set of all words that are equivalent to u w.r.t. the
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relation ∼L, i.e., [u]L = { v | u ∼L v }. Therefore, we refer to the automaton
induced by the Myhill-Nerode equivalence relation ∼L as the minimal DFA for
the language L. On the other hand, there may be minimal non-isomorphic NFAs
for L.

3 Homomorphisms Preserving the Pumping Property

We investigate the impact of homomorphisms on pumping. To achieve this, we
introduce the concept of homomorphisms that maintain pumping (pumping pre-
serving homomorphisms). This concept depends on the way the pumping has to
be performed—compare Lemma 1 and Lemma 2– and is closely connected to the
idea of star-height preserving homomorphisms [11, 17]. The latter have proven to
be highly advantageous in exploring issues related to the descriptional complex-
ity of regular expressions—see, e.g., [7]. The property of pumping preservation
exhibited by homomorphisms serves a comparable rôle in the examination of
the computational complexity of pumping problems, as studied in [8].

In fact, our proofs below characterizing the different variants of pumping
preserving homomorphisms mirroring similar properties of the star height pre-
serving homomorphisms, culminating in a proof that all these notions coincide.
For most of the examples and proofs below, our strategy follows the same outline
as in [11]. We try to keep this paper self-contained, but occasionally need some
technical lemmata from [11], whose proofs are not essential for understanding
the material presented here.

Definition 3. Let L ⊆ Σ∗ be a regular language and w be a word in Σ∗. Then
we define the following two properties:

1. The word w has the pumping property w.r.t. the language L, if w admits a
decomposition w = xyz with |y| ≥ 1 such that xy∗z ⊆ L, and

2. the word w has the enhanced pumping property w.r.t. the language L, if w
admits a decomposition w = xyz with |y| ≥ 1 such that4 xyzv ⊆ L if and
only if xy∗zv ⊆ L, for all words v ∈ Σ∗.

Let h : Σ → Γ ∗ be a homomorphism. Then h is said to preserve the pumping
property if and only if the following condition holds: for each regular language L
over Σ and each word w ∈ Σ∗, the word w has the pumping property w.r.t. the
language L if and only if its homomorphic image h(w) has the pumping property
w.r.t. h(L). A similar definition applies for a homomorphism to be enhanced
pumping preserving by replacing pumping preserving by enhanced pumping pre-
serving everywhere.

The following is immediate from the definition of the pumping properties.

Lemma 4. Let L ⊆ Σ∗ be a regular language and w be a word in Σ∗. If the
word w does not satisfy the pumping property w.r.t. the language L, then w does

4 In abuse of notation we write xyzv ⊆ L instead of {xyzv} ⊆ L.
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not satisfy the enhanced pumping property w.r.t. the same language. Moreover,
if the homomorphism h does not preserve the pumping property, then it does
not preserve the enhanced pumping property either. ⊓⊔

Next we show that one implication in the definition of the (enhanced) pump-
ing preserving property is easily seen to be true.

Lemma 5. For each ε-free homomorphism h : Σ → Γ ∗ and every regular lan-
guage L over Σ, and every word w ∈ Σ∗ the following holds: if w has the
pumping property w.r.t. L, then h(w) has the pumping property w.r.t. h(L). The
statement is also valid for the enhanced pumping property.

What are the homomorphisms such that the reverse implication is satisfied as
well? The notion of preserving the (enhanced) pumping property is well defined,
although one at first glance might think that its always true for any (ε-free)
homomorphism, since regular languages can be pumped and are closed under
homomorphisms. This is not the case.5

Example 6. Let Σ = {a, b} let Γ = {c}, and let h denote the unary projection
h(a) = h(b) = c. Consider the language L = (aa)∗∪b(bb)∗. Then the word w = b
cannot be pumped w.r.t. L, since bi /∈ L whenever i is odd. But h(L) = c∗, and
it is obvious that the word h(b) can be pumped w.r.t. h(L). ⊓⊔

In fact, all homomorphisms preserving the (enhanced) pumping property are
injective, as we shall prove later on. Recall that an injective homomorphism is
commonly referred to as code, and the homomorphic images of the alphabet
letters of its domain are referred to as codewords. A code with the property that
no codeword is a prefix (suffix, respectively) of another codeword is a prefix code
(suffix code, respectively). A code that is both a prefix code and a suffix code is
called a bifix code.

Example 7. Let Σ = {a, b, c}, let Γ = {0, 1}. Let h be the prefix code given by
h(a) = 01, h(b) = 011, and h(c) = 0111. Consider the language L1 = (a∪bc∗b)+.
Then the word w = bb does not have the pumping property: there are two
decompositions w = xyz with |y| > 0. But, for these, we have xy0z = b or
xy0z = ε, which are not in L.

Now let L2 = 0(10 ∪ 1101)∗1. Then obviously 0(1101)i1 ∈ L2, for every
value i ≥ 0, so the word 011011 has the pumping property w.r.t. language L2.
Observe, that for all i ≥ 1 we have

h(ai+1) = (01)i+1 = 0 (10) · · · (10)︸ ︷︷ ︸
i times

1

as well as

h(bcib) = 011 (0111) · · · (0111)︸ ︷︷ ︸
i times

011 = 0 (1101) · · · (1101)︸ ︷︷ ︸
i+1 times

1,

5 Because of Lemma 4, in the examples to come, it suffices to restrict our attention to
the (non-enhanced) pumping property.
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for all i ≥ 0. One can easily observe that these two patterns exhaust the set L2,
so we can conclude that L2 = h(L1). ⊓⊔

The problematic phenomenon illustrated in the above example has been for-
malized in [11]: Let h : Σ∗ → Γ ∗ be a code. Then, we say that h has the
non-crossing property, if and only if for all v1, v2, w1, w2 ∈ Γ+ we have that if
(v1 ∪ v2) · (w1 ∪ w2) ⊆ h(Σ), then v1 = v2 or w1 = w2.

Lemma 8. Let h be a code which does not have the non-crossing property.
Then h is neither pumping preserving nor enhanced pumping preserving.

If we restrict our attention to bifix codes, the non-crosssing property is suf-
ficient:

Lemma 9. Let h be a bifix code with the non-crossing property, and let L be a
regular language. If w ∈ L does not have the pumping property w.r.t. language L,
then h(w) does not have the pumping property w.r.t. h(L). The result is also valid
for the enhanced pumping property.

Now, we are ready to prove that indeed all pumping preserving homomor-
phisms are codes:

Lemma 10. Let h be a homomorphism that is not injective. Then h is neither
pumping preserving, nor enhanced pumping preserving.

But we observe that in general it is not needed for a pumping preserving
homomorphism to be prefix-free.

Lemma 11. There are (enhanced) pumping preserving codes which are not pre-
fix codes.

To obtain a necessary and sufficient condition, we use a few more definitions
from [11]: Let h : Σ∗ → Γ ∗ be a code. Let R1, R2 be languages over Γ such that
R1 · R2 ⊆ h(Σ∗). The ordered pair (R1, R2) has the tag (w.r.t. h) if one of the
following holds:

– There exists r ∈ Γ ∗ and R′
1 ⊆ h(Σ∗) such that R1 = R′

1r and rR2 ⊆ h(Σ∗).
– There exists s ∈ Γ ∗ and R′

2 ⊆ h(Σ∗) such that R2 = sR′
2 and R1s ⊆ h(Σ∗).

The shortest word that satisfies the first condition (the second condition, respec-
tively) is called the suffix tag (the prefix tag, respectively) of (R1, R2). A code
has the tag property if for all x, x′, y, y′ ∈ Γ ∗, if (x ∪ x′)(y ∪ y′) ⊆ h(Σ∗), then
the pair (x ∪ x′, y ∪ y′) has the tag.

For the proof of the next result, we need a theorem on unique decodability
as stated in [11] and attributed to Schützenberger [20].

Theorem 12. A homomorphism h : Σ∗ → Γ ∗ is injective if and only if the
following hold:

– For all a ∈ Σ, h(a) /∈ h(Σ \ {a})∗.
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– For all x, y, z ∈ Σ∗ the following holds: if all of x, xy, yz, and z are in h(Σ∗),
then y ∈ h(Σ∗).

Now we are equipped for proving the next statement—the proof of the fol-
lowing lemma is similar to that in [11, Theorem 5.1].

Lemma 13. Let h : Σ∗ → Γ ∗ be a code that has the tag property. Then h is
pumping and enhanced pumping preserving.

The converse direction is now easy:

Lemma 14. If a code h is pumping preserving, then it has the tag property. The
implication remains valid if h is enhanced pumping preserving.

Hence, we have obtained a tight characterization of those homomorphisms
that preserve the pumping properties.

Corollary 15. A homomorphism preserves the (enhanced) pumping property if
and only if it has the tag property. ⊓⊔

Finally, we can state the main theorem of this section. It was proved in [11]
that a homomorphism preserves star height if and only if it has the tag property.
Thus, we obtain:

Theorem 16. A homomorphism preserves the pumping property if and only if
it preserves the enhanced pumping property if and only if preserves star height.

4 Minimal Pumping Constants and Longest Paths in
Finite Automata

We consider the pumping constants mpc(L) and mpe(L) and their relation to the
longest path in the minimal finite automaton accepting the regular language L.
Here mpc(L) (mpe(L), respectively) refers to the minimal number p satisfying
the conditions of Lemma 1 (Lemma 2, respectively), for a regular language L
overΣ. Simple facts about these constants can be found in [5, 12]. Concerning the
relation between both mpc and mpe we have mpc(L) ≤ mpe(L), for every regular
language L. The relation of mpe(L) and the state complexities is more subtle,
namely for a regular language L over the alphabet Σ we have mpc(L) ≤ sc(L)
and it was shown in [12] that

mpe(L) ≤ sc(L) ≤
mpe(L)−1∑

i=0

|Σ|i.

The former inequality also holds for nsc, the nondeterministic state complexity,
i.e., mpc(L) ≤ nsc(L), while the latter does not generalize. In fact, mpe and nsc

are incomparable [8]. There it was argued that the mpe-measure and the length
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q0

q3q2q1 . . . qn

a1

a1 a2
a3

an

a2 a3 a4 an

a1 a2 a3 an

Fig. 1. The deterministic automaton An accepting Ln = L(An). The non-accepting
sink state is not shown. The language Ln satisfying mpe(Ln) = 3 and the longest path
in A starting in the initial state q0 is of length n+ 1.

of the longest path of the automaton, that is, a simple directed path of maxi-
mum length from the initial state of the automaton, are different measures in
general, using the witness shown in Figure 1. Nevertheless, for a restricted class
of automata we will show that in fact both pumping measures can be bounded
somehow with the length of the longest path of the underlying automaton. Be-
fore we state our results for the pumping measures and their relation to the
longest path, we introduce two notations: let A be a DFA and q a state of A, not
necessarily final. Then ℓA (ℓA

∣∣
q
, respectively) refers to the length, i.e., number

of transitions, of the longest simple directed path of maximum length in the
automaton A starting in q0 and ending in any state (in state q, respectively).
Here a path is called simple if it does not have repeated states/vertices. The
following observation is immediate by Jaffe’s proof, cf. [14], and was mentioned
in [8]:

Lemma 17. Let A be a DFA and L := L(A). Then mpe(L) ≤ ℓA + 1. If L is a
unary language, then mpe(L) = sc(L).

Using the witness depicted in Figure 1, we have a language L where mpe(L)
and ℓA + 1 can be far apart. Nevertheless, for the class of bideterministic finite
automata (biDFAs, for short) this is not the case as shown next. Here, a finite
automaton A is bideterministic if it is both partially deterministic and partially
co-deterministic and has a sole accepting state. Moreover, an automaton A is
partially co-deterministic if the reversed automaton obtained by reversing the
transitions of A is partially deterministic. A language L is said to be bidetermin-
istic if it is accepted by a biDFA A, i.e., L = L(A). Observe that a language L
is accepted by a bideterministic finite automaton if and only if the minimal au-
tomaton of L is reversible, i.e., deterministic and co-deterministic, and has a
unique final state [19]. This leads us to the key property of bideterministic finite
automata of which we will make heavy use:

Lemma 18. Let A = (Q,Σ, · , q0, F ) be a biDFA and z a word from Σ∗. Then
p · z = q, for p, q ∈ Q implies that |{ p | p · z = q }| = 1, i.e., if the z-predecessor
state p of q exists, then p is unique. ⊓⊔
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The next lemma uses the above property in the proof and reads as follows:

Lemma 19. Let L be a bideterministic language accepted by a minimal DFA A
and assume L := L(A). Then ℓA ≤ mpe(L) ≤ ℓA + 1.

The bounds in the previous lemma are best possible. This can be seen by
the following bideterministic languages: language L1 = {ab} over the binary
alphabet {a, b} and the unary language L2 = {aa}. Both languages are accepted
by minimal 4-state DFAs, which are both bideterministic if the non-accepting
sink state is removed. Let A1 (A2, respectively) be the DFA that accepts L1

(L2, respectively)—see Figure 2. Thus, in both cases we have ℓA1 = ℓA2 = 3,

q0 q1 q2
a b q0 q1 q2

a a

Fig. 2. Deterministic finite automata A1 and A2 accepting the bideterministic and
finite languages L1 = {ab} and L2 = {aa}, respectively. In both drawings the non-
accepting sink state is not shown. The longest simple path in both automata is of
length 3 (including the non-accepting sink state) and the pumping constants of the
languages are mpe(L1) = 3 and mpe(L2) = 4.

but mpe(L1) = 3 = ℓA1
, while mpe(L2) = 4 = ℓA2

+ 1. This is seen as follows:
first consider the language L1. The word ab cannot be pumped at all, because
any shorter word is not a member of L1. Hence, mpe(L1) ≥ 3. Every word of
length at least 3 maps the initial state of the automaton A1 to the non-accepting
sink state. Any word of length at least 3 that starts with the letter b or with
the prefix aa visits the non-accepting sink state at least twice and hence can
by pumped respecting equivalence classes. In case the word of length at least 3
begins with ab we are left with the prefixes aba or abb. Then, it is easy to see that
in the former case the letter b in the middle of the prefix can be pumped, while
in the latter case the first letter a is pumpable. The details are left to the reader.
Hence, we have mpe(L) = 3 = ℓA1 as required. For the unary language L2, the
argumentation that mpe(L2) = 4 is slightly simpler. Since L2 is unary, there
is only a single word of length 3, but a3 is not a member of L2. Shortening
this word to any length strictly less than 3, results in a word that belongs to a
different Myhill-Nerode equivalence class then the word a3. Hence a3 cannot be
pumped by respecting equivalence classes. Therefore, mpe(L2) ≥ 3+1 = 4 and by
Lemma 17 we have mpe(L) ≤ ℓA2 +1 = 3+1 = 4. Thus, mpe(L2) = 4 = ℓA2 +1.

Next, let us consider the pumping measure mpc. Recall that mpc(L) ≤ mpe(L),
for every regular language L. The gap between path measures can be arbitrar-
ily large even for bideterministic languages. Consider the bideterministic unary
language Ln = (an)∗, for n ≥ 1, which is accepted by a unary cyclic DFA
with n states. Since mpe and sc coincides for unary languages, we have that
mpe(Ln) = n. On the other hand, mpc(Ln) = 1, because Ln ̸= ∅ and each
word w ∈ Ln can be pumped by choosing x = λ, y = w, and z = λ, since
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xy∗z = w∗ ⊆ L. Nevertheless, we can also show a nice relation for the mpc-
measure with a longest path problem. The result is stated in the following lemma.

Lemma 20. Let L be a bideterministic language that is accepted by the minimal
DFA A and define L := L(A). Then mpc(L) = ℓA

∣∣
qf

+ 1, where qf is the unique

final state of A.

5 The Complexity of Pumping, Revisited

We will consider the following decision problem [8] related to the pumping lem-
mata stated in the introduction:

Language-Pumping-Problem or for short Pumping-Problem:
Input: a finite automaton A and a natural number p, i.e., an encoding ⟨A, 1p⟩.
Output: Yes, if and only if the statement from Lemma 1 holds for the lan-

guage L(A) w.r.t. the value p.

We apply our findings on the relation between the minimal pumping constants
from the previous section in order to give a simpler proof for the coNP-complete-
ness of the Pumping-Problem for DFAs. This will be a corollary to an inap-
proximability result for DFAs, which significantly improves a previously known
inapproximability result for NFAs from [8].

The Longest-Directed-Path-Problem (LDP-problem) is defined as fol-
lows: given a directed graph G = (V,E), find the longest sequence of distinct
vertices v1, v2, . . . , vk such that (vi, vi+1) ∈ E, for 1 ≤ i < k. Naturally, the LDP-
problem gives rise to a NP-complete decision and an approximation problem. The
LDP-optimization problem cannot be approximated in polynomial time within a
factor of n1−ε for any constant ε > 0, unless P = NP. Also, assuming the Expo-
nential Time Hypothesis (ETH), which is a stronger assumption than P ̸= NP,
it cannot be approximated in polynomial time within a factor of ω(n log logn

(logn)2 ).

Both inapproximability bounds are shown6 in [2]. By inspecting the proof, one
can see that the result in fact applies to digraphs with bounded outdegree [1].
In the next theorem we use the LDP-optimization problem as a starting point
for our reduction to the Pumping-Problem for DFAs.

Theorem 21. Let A be a DFA with s states over an alphabet of size O(s).
Then no deterministic polynomial time algorithm can approximate the minimal
pumping constant w.r.t. Lemma 1 (Lemma 2, respectively) within a factor of s1−ε

for any constant ε > 0, unless P = NP. Assuming ETH, the inapproximability
factor becomes ω( s log log s

(log s)2 ).

A direct consequence of the previous proof is that the Pumping-Problem for
both pumping lemmata is intractable; this re-establishes a result from [8]—with

6 The actual inapproximability bound assuming the ETH from [2] is slightly stronger,
but involves a function f(n) satisfying some additional tameness constraint. We use
the simplified bound for better readability.
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an even stronger bound on the approximation ratio—, but it uses a growing-size
alphabet. Luckily, we can use a (enhanced) pumping preserving homomorphism
to code it down to a binary alphabet. Let Σ = {a1, a2, . . . , ar} be an r-letter
alphabet and h be the homomorphism given by ai 7→ bin(i)bin(i)R, for 1 ≤ i ≤ r.
Here, bin(i) denotes the ⌈log r⌉-bit binary encoding of the number i and bin(i)R

its reversal. As shown in [7], the code h preserves star height, which in turn
implies that h also preserves the (enhanced) pumping property by Theorem 16.
Now we are ready for the next lemma.

Lemma 22. Let r ≥ 3 be an integer, Σ = {a1, a2, . . . , ar} be an r-letter alpha-
bet, h be the homomorphism given by ai 7→ bin(i)bin(i)R, for 1 ≤ i ≤ r, and L
be a regular language over Σ. Then

mpc(h(L)) = 2b · (mpc(L)− 1) + 1,

where b = ⌈log r⌉.

For the minimal pumping constants w.r.t. Lemma 2 we prove the following
lemma in similar vein as Lemma 22.

Lemma 23. Let r ≥ 3 be an integer, Σ = {a1, a2, . . . , ar} be an r-letter alpha-
bet, h be the homomorphism given by ai 7→ bin(i)bin(i)R, for 1 ≤ i ≤ r, and L
be a regular language over Σ. Then

2b · (mpe(L)− 1) < mpe(h(L)) ≤ 2b · mpe(L),

where b = ⌈log r⌉.

One may ask whether we can come up with an exact calculation of mpe(h(L))
like for mpc(h(L)). As we will see next this is not possible since the bounds
for mpe(h(L)) from the previous lemma are best possible. We begin with a
language L that meets the upper bound, i.e., mpe(h(L)) = 2b · mpe(L). De-
fine L = (abc)∗. Thus, 2b = 4. Observe that each word of length at least three is
pumpable w.r.t. Lemma 2 either (i) by its prefix abc, (ii) by its second letter if
the first letter is not an a, (iii) by its first letter if the second letter is not an a,
or (iv) by its third letter, otherwise. Thus mpe(L) ≥ 3. Moreover, the word ab
cannot be pumped w.r.t. Lemma 2, which can easily be seen by concatenating
it with v = c. Hence, we have mpe(L) = 3. Next, consider h(L). The language L
is mapped by h onto h(L) = (000001101001)∗. Similarly, as in the above argu-
mentation, one finds that each word in h(L) of length twelve can be pumped
w.r.t. Lemma 2 while the word 00000110100 cannot be pumped. Therefore,
mpe(h(L)) = 12 = 4 ·3 = 2b ·mpe(L) as desired. Finally, we consider a language L
that meets the lower bound, that is, mpe(h(L)) = 2b·(mpe(L)−1)+1. Let L = abc.
Again 2b = 4. It is easy to see that mpe(L) = 4, since the word abc cannot be
pumped w.r.t. Lemma 2 while all words of length four are pumpable. The details
are left to the reader. On the other hand, we have h(L) = 000001101001, which
fulfills mpe(h(L)) = 13 > 12+1 = 4 ·3+1 = 4 · (4−1)+1 = 2b · (mpe(L)−1)+1.
Thus, the bounds proven in Lemma 23 are best possible.

We close this section with the main result on the inapproximability of the
Pumping-Problem for DFAs on binary alphabets.
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Theorem 24. Let A be a DFA with s states over a binary alphabet. Then no
deterministic polynomial time algorithm can approximate the minimal pumping
constant w.r.t. Lemma 1 within a factor of s1−ε for any constant ε > 0, unless
P = NP. In case of ETH the inapproximability factor becomes s log log s

(log s)2
. Both

statements hold true if one considers the approximation of the minimal pumping
constant w.r.t. Lemma 2.

6 Conclusion

In the present paper, we revisited the pumping problem for regular languages.
For bideterministic finite automata, the pumping constant is more well-behaved
than in the general case. We characterized the pumping constant in terms of
the longest path from the start state to an accepting state. Then, we turned
our attention to the homomorphisms preserving the pumping property. This is
seemingly a more primitive abstraction than that of a homomorphism preserving
star height. Interestingly, the two definitions are equivalent. Compared with the
results obtained for NFAs from [8], the inapproximability bound we obtained by
putting the pieces together is stronger, even though we restricted the input to
DFAs, which means that the input is represented less succinctly.

Acknowledgement. The authors would like to thank Andreas Björklund for some
fruitful discussion.
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