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Abstract. We investigate the computational complexity of the Pump-
ING-PROBLEM, that is, for a given finite automaton A and a value p, to
decide whether the language L(A) satisfies a previously fixed pumping
lemma w.r.t. the value p. Here we concentrate on two different pumping
lemmata from the literature. It turns out that this problem is intractable,
namely, it is already coNP-complete, even for deterministic finite au-
tomata (DFAs), and it becomes PSPACE-complete for nondeterministic
finite state devices (NFAs), for at least one of the considered pumping
lemmata. In addition we show that the minimal pumping constant for the
considered particular pumping lemmata cannot be approximated within
a factor of o(n'~%) with 0 < § < 1/2, for a given n-state NFA, unless the
Exponential Time Hypothesis (ETH) fails.

1 Introduction

The syllabus on courses of automata theory and formal languages certainly con-
tains the introduction of pumping lemmata for regular and context-free lan-
guages in order to prove non-regularity or non-context freeness, respectively, of
certain languages. Depending on the preferences of the course instructor and
the used monograph, different variants of pumping lemmata are taught. For in-
stance, consider the following pumping lemma, or iteration lemma, that can be
found in [11, page 70, Theorem 11.1], which describes a necessary condition for
languages to be regular.

Lemma 1. Let L be a regular language over X. Then, there is a constant p
(depending on L) such that the following holds: If w € L and |w| > p, then
there are words v € X*, y € XT, and z € X* such that w = zyz and 2y'z € L
for t > 0—it is then said that y can be pumped in w.

A lesser-known pumping lemma, attributed to Jaffe [10], characterizes the
regular languages, by describing a necessary and sufficient condition for lan-
guages to be regular. For other pumping lemmata see, e.g., the annotated bibli-
ography on pumping [12]:



Lemma 2. A language L is regular if and only if there is a constant p (depend-
ing on L) such that the following holds: If w € X* and |w| = p, then there are
words x € X*, y € X, and z € X* such that w = xyz and®

wv =ayzv € L <= xylzv e L
for allt >0 and each v € X*.

For a regular language L the value of p in Lemma 1 can always be chosen to be
the number of states of a finite automaton, regardless whether it is deterministic
or nondeterministic, accepting L. Consider the unary language a™a*, where all
values p with 0 < p < n do not satisfy the properties of Lemma 1, but p =n+1
does. A closer look on some example languages reveals that sometimes a much
smaller value suffices. For instance, consider the language

L=a"+a*bb* + a*bb*aa* + a*bb*aa”bb*,
which is accepted by a (minimal) deterministic finite automaton with five states,

the sink state included—see Figure 1. Already for p = 1 the statement of
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Fig. 1: The minimal deterministic finite automaton A accepting the language L.

Lemma 1 is satisfied since regardless whether the considered word starts with a
or b, this letter can be readily pumped. Thus, the minimal pumping constant
satisfying the statement of Lemma 1 for the language L is 1, because the case
p = 0 is equivalent to L = @) [4]. This already shows that the minimal pump-
ing constant w.r.t. Lemma 1 is non-recursively related to the deterministic state
complexity of a language. For the pumping constant w.r.t. Lemma 2 the situation
is even more involved. Here the value of p can only be chosen to be the number
of states of a deterministic finite automaton accepting the language in question.
In fact, the gap between the nondeterministic state complexity and the minimal
pumping constant p satisfying Lemma 2 for a specific language can be arbitrar-
ily large—cf. Theorem 3. Moreover, the relation between the minimal pumping
constant p w.r.t. Lemma 2 is related to the deterministic state complexity n of a
language L over the alphabet X' by the inequality p < n < Zf;ol |X|%, which was
recently shown in [7]. A careful inspection of the language L mentioned above
reveals that the minimal pumping constant p when considering Jaffe’s pumping
lemma is equal to five. Any word of length at least five uses a loop-transition
in its computation—see Figure 1-—and hence the letter on this loop-transition

3 Observe that the words w = zyz and zy'z, for all t > 0, belong to the same Myhill-
Nerode equivalence class of the language L. Thus, one can say that the pumping of
the word y in w respects equivalence classes.



can be pumped in the word under consideration. Thus mpe(L) < 5. On the other
hand, the word baba cannot be pumped such that the Myhill-Nerode equivalence
classes are respected, because the word zz belongs to a different equivalence class
than zyz, for every decomposition of baba into x, y, and z with |y| > 1—again,
see Figure 1. Therefore, mpe(L) > 4 and thus, mpe(L) = 5. This example shows
that the minimal pumping constant is not equivalent to the length of the short-
est accepting path in (the minimal) automaton accepting the language. The
authors experienced that this is the most common misconception of the minimal
pumping constant when discussing this for the first time.

This gives rise to the following definition of a minimal pumping constant:
for a regular language L let mpc(L) (mpe(L), respectively) refer to the minimal
number p satisfying the conditions of Lemma 1 (Lemma 2, respectively). Re-
cently, in [4,7] minimal pumping constants w.r.t. the above two lemmata were
investigated from a descriptional complexity perspective. Here we focus more on
the computational complexity of pumping, a problem that to our knowledge was
not considered so far. This is even more surprising, since pumping lemmata are
omnipresent in theoretical courses in automata theory and formal languages. We
will consider the following problem related to the pumping lemma stated above:

LANGUAGE-PUMPING-PROBLEM or for short PUMPING-PROBLEM:
INPUT: a finite automaton A and a natural number p, i.e., an encoding
(A, 1P).
OuTPUT: Yes, if and only if the statement from Lemma 1 holds for the
language L(A) w.r.t. the value p.

A similar definition applies when considering the condition of Lemma 2 instead.
We summarize our findings on the computational complexity of the PUMPING-
PROBLEM in Table 1.

2 Preliminaries

We assume the reader to be familiar with the basics in computational complexity
theory [13]. In particu-
lar we recall the inclu-
sion chain: P C NP C
PSPACE. Here P (NP,

PUMPING-PROBLEM w.r.t. ...

respectively) denotes the Lemma 1 Lemma 2

class of problems solvable DFA coNP-complete

by deterministic (nonde-

terministic, respectively) coNP-.hard. p  PSPACE-compl.
Turing machines in poly- NFA contained in /I3

time, and PSPACE refers No det. 2°05°) _time ApPIOX.

to the class of languages within o(s'~?), unless ETH fails.

accepted by deterministic
or nondeterministic Tur-
ing machines in polyno-
mial space [16]. As usual,

Table 1: Complexity of the PUMPING-PROBLEM for
variants of finite state devices.



the prefix co refers to the complement class. For instance, coNP is the class of
problems that are complements of NP problems. Moreover, recall the complexity
class 115 from the polynomial hierarchy, which can be described by polynomial
time bounded oracle Turing machines. Here IT}" = coN PNP | where coNP” is the
set of decision problems solvable in polynomial time by a universal Turing ma-
chine with an oracle for some complete problem in class A. The class NP is
defined analogously. Completeness and hardness are always meant with respect
to deterministic many-one logspace reducibilities (<!98) unless stated otherwise.

Next we fix some definitions on finite automata—cf. [6]. A nondeterministic
finite automaton (NFA) is a quintuple A = (Q, X, -, qo, F), where @ is the finite
set of states, X is the finite set of input symbols, qo € @ is the initial state, F C Q
is the set of accepting states, and the transition function - maps Q x ¥ to 29.
Here 29 refers to the powerset of Q. The language accepted by the NFA A is
defined as L(A) = {w € X* | (qo - w) N F # 0 }, where the transition function is
recursively extended to a mapping Q x X* — 2% in the usual way. An NFA A is
said to be partial deterministic if |q-a| < 1 and deterministic (DFA) if |¢-a|] =1
for all ¢ € @ and a € X. In these cases we simply write ¢ - a = p instead of
q-a = {p}. Note that every partial DFA can be made complete by introducing
a non-accepting sink state that collects all non-specified transitions. For a DFA,
obviously every letter a € X induces a mapping from the state set @ to @ by
q — q - a, for every ¢ € . Finally, a finite automaton is unary if the input
alphabet X' is a singleton set, that is, X = {a}, for some input symbol a.

The deterministic state complexity of a finite automaton A with state set @
is referred to as sc(A) := |Q| and the deterministic state complezity of a regular
language L is defined as

sc(L) = min{sc(A4) | A is a DFA accepting L, i.e., L = L(A) }.

A similar definition applies for the nondeterministic state complexity of a regular
language by changing DFA to NFA in the definition, which we refer to as nsc(L).
It is well known that

nsc(L) < sc(L) < 2#s¢(B)

for every regular language L.

A finite automaton is minimal if its number of states is minimal with respect
to the accepted language. It is well known that each minimal DFA is isomorphic
to the DFA induced by the Myhill-Nerode equivalence relation. The Muyhill-
Nerode equivalence relation ~, for a language L C X* is defined as follows: for
u,v € X* let u ~p v if and only if uw € L <= wvw € L, for all w € X*. The
equivalence class of u is referred to as [u]r, or simply [u] if the language is clear
from the context and it is the set of all words that are equivalent to u w.r.t.
the relation ~y,, i.e., [u], = {v | u ~r v}. Therefore we refer to the automaton
induced by the Myhill-Nerode equivalence relation ~j as the minimal DFAfor
the language L. On the other hand there may be minimal non-isomorphic NFAs
for L.



3 The Complexity of Pumping

Before we start with the investigation of the complexity of pumping problems
we list some simple facts about the minimal pumping constants known from the
literature: (1) mpc(L) = 0 if and only if L = @, (2) for every non-empty finite
language L we have mpc(L) = 14+ max{ |w| | w € L}, (3) mpc(L) = 1 implies for
the empty word A that A € L, and (4) mpe(L) = 1 ifand only if L = ) or L = X*.
Also the inequalities mpc(L) < sc(L) < nsc(L) hold—see, e.g., [4, 7]. For a finite
languages we have mpe(L) = 2+max{|w| | w € L} if each w with |w| = max{|w| |
w € L} is contained in L. Otherwise mpe(L) = 1 + max{|w| | w € L} holds. The
relation of mpe(L) and the state complexities is more subtle, namely for a regular
language over the alphabet X' it was shown in [7] that

mpe(L)—1

mpe(L) <sc(L)< Y |Z[.
=0

On the other hand, mpe(L) and nsc(L) are incomparable in general as we see
next—the automaton used to prove the second statement of the following The-
orem is shown in Figure 2:

@ az @ az @ ay an @
9 27

Fig. 2: The nondeterministic finite automaton A, accepting L,, = L(A,,) satis-
fying mpe(L,) = 3 and nsc(L,) > n.

Theorem 3. The following statements hold: (1) There is a family of unary
regular languages (L;);>2 such that the inequality nsc(L;) < mpe(L;) holds. (2)
There is a family of reqular languages (L;);>4 over a growing size alphabet such
that 3 = mpe(L;) < i < nse(L;).

Observe, that the automaton depicted in Figure 2 is a partial DFA, where
only the non-accepting sink state is missing. It is worth mentioning that this
finite state device shows that even for DFAs the mpe-measure and the longest
path of the automaton, that is, a simple* directed path of maximum length
starting in the initial state of the automaton, are different measures in general.
Nevertheless, the following observation is immediate by Jaffe’s proof, cf. [10]:

4 Here a path is called simple if it does not have repeated states /vertices.



Lemma 4. Let A be a DFA and L := L(A). Then mpe(L) < £4 + 1, where £4
is the length, i.e., number of transitions, of the longest path of the automaton A.
If L is a unary language, then mpe(L) = sc(L). O

3.1 The Pumping-Problem for NFAs

We start our journey with results on the complexity of the PUMPING-PROBLEM
for NFAs. First we consider the problem w.r.t. Lemma 1 and later in the sub-
section w.r.t. Lemma 2.

Theorem 5. Given an NFA A and a natural number p, it can be decided in IT§
whether for the language L(A) the statement of Lemma 1 holds for the value p.

In order to prove the theorem, we establish an auxiliary lemma.

Lemma 6. Given an NFA A = (Q,X,-,qo, F) and a word w over X, the lan-
guage inclusion problem for w* in L(A) is coNP-complete. The variant of the
problem where A is deterministic is L-complete.

Now we are ready to prove the upper bound for the PUMPING-PROBLEM:

Proof (of Theorem 5). We show that the pumping problem for NFAs belongs
to I15. Let (A, p) be an input instance of the problem in question, where Q is
the state set of A. We construct a coNP Turing machine M with access to a
coNP oracle: first the device M deterministically verifies whether p > |@Q|, and if
so halts and accepts. Otherwise the computation universally guesses (V-states)
a word w with p < |w| < |@|. On that particular branch M checks determin-
istically if w belongs to L(A). If this is not the case the computation halts
and accepts. Otherwise, M deterministically cycles through all valid decompo-
sitions w = zyz with |y| > 1. Then it constructs a finite automaton B accepting
the language quotient (r=1-L(A))-2~. Here, if A is deterministic, then so is B.
Then M decides whether y* C L(B) with the help of the coNP oracle—compare
Lemma 6. If y* C L(B), then the cycling through the valid decompositions is
stopped, and the device M halts and accepts. Notice that the latter is the case
iff zy*z C L(A). Otherwise, i.e., if y* ¢ L(B), the Turing machine M contin-
ues with the next decomposition in the enumeration cycle. Finally, if the cycle
computation finishes, the Turing machine halts and rejects, because no valid
decomposition of w was found that allows for pumping. In summary, the Turing
machine operates universally, runs in polynomial time, and uses a coNP oracle.
Thus, the containment within 175 follows. O

Next we show that the problem in question is coNP-hard and gives us a nice
non-approximability result under the assumption of the so-called Ezxponential-
Time Hypothesis (ETH) [3,9]: there is no deterministic algorithm that solves
3SAT in time 2°(**™) where n and m are the number of variables and clauses,
respectively.

Note that the unary regular language T, = aP~'a* satisfies mpc(7,) = p.
The languages T}, will be a basic building block for our reduction. We build



upon the classical coNP-completeness proof of the inequality problem for regular
expressions without star given in [8;, Thm. 2.3]. We modify the reduction a bit,
since we want to deal with only one parameter in the analysis to come, and that
is the number of clauses.

Theorem 7. Let ¢ be a formula in SDNF with n variables and m clauses. Then
a nondeterministic finite automaton A, can be computed in time O(m?) such
that the language Z = L(A,) is homogeneous® and Z equals {0, 1}>™ if and only
if ¢ is a tautology. Furthermore, A, has O(m?) states.

The last 3m — n positions of the words in the homogeneous language used
for the above reduction do not convey any information; they simply serve the
purpose of avoiding a parameterization by n. In order to finish our reduction, we
embed Z into the language Y = Z - # - X* 4+ {0,1}3™ - # - T}, for some carefully
chosen p, where # is a new letter not contained in Y. This reduction runs in
polynomial time.

Lemma 8. Let ¢ be a formula in SDNF with n variables and m clauses and
let A, be the NFA constructed in Theorem 7. Furthermore, let

Y =27 -#- 54+ {0,1}3™ . #.T,,

for p > 2. Then the minimal pumping constant of Y w.r.t. Lemma 1 is equal
to 3m +2, if Z ={0,1}*™, and is equal to 3m + 1+ p otherwise.

As a direct corollary we obtain:

Corollary 9. Given an NFA A and a natural number p in unary, it is coNP-
hard to decide whether for the language L(A) the statement from Lemma 1 holds
for the value p. a

Next we prove the following main result:

Theorem 10. Let A be an NFA with s states, and let § be a constant such that

0 < § <1/2. Then no deterministic 2°(5") _time algorithm can approzimate the
minimal pumping constant w.r.t. Lemma 1 within a factor of o(s'~?), unless
ETH fails.

Proof. We give a reduction from the 3DNF tautology problem as in Lemma 8.
That is, given a formula ¢ in 3SDNF with n variables and m clauses, we construct
an NFA A that accepts the language Y = Z - # - X* + {0,1}°™ - # - T,,. Here,
the set Y features some carefully chosen parameter p, which will be fixed later
on. For now, we only assume p > 2.

By Lemma 8, the reduction is correct in the sense that if ¢ is a tautology,
then the minimal pumping constant w.r.t. Lemma 1 is strictly smaller than in
the case where it admits a falsifying assignment.

® A language L C X* is homogeneous if all words in L are of same length.



Observe that the running time of the reduction is linear in the number of
states of the constructed NFA describing Y. It remains to estimate that number
of states. Recall from Theorem 7 that the number of states in the NFA A, is of
order O(m?). The set Z - # - X* thus admits an NFA with O(m?) states; and
the language {0, 1}>™ - # - T}, can be accepted by an NFA with O(m + p) states.
Altogether, the number of states is in O(m? + p).

Now we need to fix the parameter p in our reduction; let us pick p = m%,
where it is understood that we round up to the next integer. Given that ¢ is
constant, for large enough m, we can ensure that p > 2. So this is a valid choice
for the parameter p—in the sense that the reduction remains correct.

Towards a contradiction with the ETH, assume that there is an algorithm Ag
approximating the pumping constant within o(s'~%) running in time 20(s") Then
algorithm As could be used to decide whether Z = {0,1}>™ as follows: the
putative approximation algorithm Ajs returns a cost C' that is at most o(s'~%)
times the optimal cost C*, that is, C' = o(s'~%) - C*.

We consider two cases: if Z = {0, 1}3™, then the pumping constant is in O(m)
by Lemma 8. In this case, the hypothetical approximation algorithm As returns
a cost C' with

C=o(m-s~%) =0 <m -0 (m?+ mi)H)

=0 (m .0 (mé)l_é) = o(m

where in the second step of the above calculation, we used the fact that s =
O(m? +p) = O(m? + m%); in the third step, we applied the inequality % > 2 to
see that the term m3 asymptotically dominates the term m?; the fourth step is
a simple term transformation; and the last two steps apply these facts in reverse
order.

On the other hand, in case Z is not full, then Lemma 8 states that the pump-
ing constant is in 2(m + p). Using the constants implied by the O-notation, the
size returned by algorithm As could thus be used to decide, for large enough m,
whether Z is full, and thus by Theorem 7 whether the 3DNF formula ¢ is a
tautology.

It remains to show that the running time of As in terms of the number of
clauses m is in 2°0™) | which contradicts the ETH. Recall that s = O(m? +p) and
p= m# with % > 2; we thus can express the running time of the algorithm As
in terms of the number of clauses m, namely,

o=

)=o(m?+m) =o(m+p);

20(55) _ 20((m2+p)8) _ 20((””%)5) — 2o(m)’
which yields the desired contradiction to the ETH. O

A careful inspection of Lemma 8 and Theorem 10 reveals that both results
remain valid if one considers the minimal pumping constant w.r.t. Lemma 2,
since mpe(T},) = p as the interested reader may easily verify.



Although, we have to leave open the exact complexity of the PUMPING-
PROBLEM for NFAs w.r.t. Lemma 1—coNP-hard and contained in IT§, we can
give a precise answer if we consider Jaffe’s pumping lemma instead. First we
establish an auxiliary theorem.

Theorem 11. Given a DFA A = (Q, X, - ,qo, F) and a deterministic or non-
deterministic finite automaton B, deciding whether every word w € L(B) de-
scribes the same equivalence class w.r.t. the Myhill-Nerode relation ~pay, is
NL-complete. If the automaton A is an NFA, the problem becomes PSPACE-
complete.

This allows us to prove the following PSPACE-completeness:

Theorem 12. Given an NFA A and a natural number p in unary, it is PSPACE-
complete to decide whether for the language L(A) the statement from Lemma 2
holds for the value p.

3.2 The Pumping-Problem for DFAs

Here we find for both pumping lemmata under consideration that the corre-
sponding PUMPING-PROBLEM for DFAs is coNP-complete. First let us prove the
upper bound:

Theorem 13. Given a DFA A and a natural number p in unary. To decide
whether for the language L(A) the statement from Lemma 1 holds for the value p
can be solved in coNP. The same upper bound applies if Lemma 2 is considered.

In fact, both problems are coNP-hard. To this end, we utilize the construc-
tion of [15] of a directed (planar) graph from a 3SAT instance ¢ that has a
Hamiltonian cycle if and only if ¢ is satisfiable. Assume that ¢ = A", C; is
a 3SAT formula with n variables z1,xs,...,z, and m clauses. Without loss of
generality we may assume that every variable occurs at most four times in ¢
and no variable appears in only one polarity (pure literal). Let us briefly recall
the construction of [15], slightly adapted to our needs,® which is illustrated in
Figure 3a for the formula

Y= ($1 \/.fg) A (i‘l Vl‘z\/l‘3) /\(i‘g\/fg).

The conversion of the given skeleton graph into a directed graph is achieved
through the utilization of couplings as demonstrated in Figure 3b and clause
gadgets depicted in Figure 3c—clause gadgets for a single literal or two literals
are constructed straight-forwardly. We require that the value of z; (or T;) is
true if a given Hamiltonian s-t-path of the directed graph indicated in Figure 3a
contains the left edge from every pair of edge assigned to z; (or T;, respectively).
Otherwise the value is assumed to be false.

The directed graph G, that has been constructed will possess a Hamiltonian
s-t-path if and only if the Boolean formula ¢ is satisfiable. Additionally, the
Hamiltonian s-t-path must satisfy the following conditions:

5 Instead of a Hamiltonian cycle we ask for a Hamiltonian s-t-path.
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Fig.3: Schematic drawing of the skeleton graph constructed for the 3SAT in-
stance . The obtained direct graph has a Hamiltonian s-t-path if and only
if ¢ is satisfiable. Here, formula ¢ is satisfiable, because ¢|z, =1 2,=0,z5=1 = 1. A
Hamiltonian s-t-path (without traversing the coupling connections) is indicated
with a boldface line.

1. The s-t-path must pass through all left edges assigned to x; (or Z;), or all
right edges assigned to xz; (Z;, respectively).

2. It is not permitted for the s-t-path to pass through both a left (right) edge
of x; and a left (right) edge of T; at the same time.

3. There must be at least one left edge present in every clause Cj.

Now we are ready to state our next theorem:

Theorem 14. Given a DFA A and a natural number p, it is coNP-hard to
decide whether for the language L(A) the statement of Lemma 1 (Lemma 2,
respectively) holds for the value p. ad
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Proof. Let ¢ be a 3SAT formula with n variables and m clauses. Then by the
above construction we obtain a skeleton graph and in turn a directed graph G,
that has a Hamiltonian s-t-path if and only if ¢ is satisfiable. It remains to
construct a partial DFA A, out of the skeleton/directed graph by giving an
appropriate labeling of the edges such that the Hamiltonian s-t-path can only
be pumped trivially. The vertices of the directed graph become the states of
the automaton A, and the edges become transitions with appropriate labels
described below. Moreover, the initial state of A, is the state s and the sole
accepting state is set to ¢.

In the skeleton graph, an edge labeled a (or b, respectively) is coupled by the
construction illustrated in Figure 4 with an edge labeled b (or a, respectively).
Observe, that in the resulting graph both connecting edges (these are the back

al a,b %b al a,b %b a‘l‘ a,b %b

o— o> o>
a |e———e| b b ab a b a.b a b a,b a
a Tb a Tb a Tb

Fig. 4: Coupling of two edges labeled a and b and two possible traversals.

and forth edges) carry the labels a and b simultaneously. Then a left (right,
respectively) bended edge of a variable z; is labeled a (b, respectively). For Z;
this is exactly the other way around. The determinism of the automaton together
with the coupling thus induces the a-b-labeling of all other bended edges. Finally,
every (vertical) straight edge, except for the edge connecting ¢ and s, is labeled
by the letter #. The t-s-edge is labeled with all letters, i.e., a, b, and #. Thus,
the input alphabet is equal to X' = {a,b} U {#}. This completes the description
of the partial DFA A,—see Figure 5 for a partial drawing of the automaton.
First we show that A, is minimal, if completed.

Claim 1. The partial DFA A, is bideterministic” and if completed, i.e., by in-
troducing a non-accepting sink state that collects all non-specified transitions,
it is the minimal (ordinary) DFA.

Next we consider the minimal pumping constants induced by the language
accepted by A.,.

Claim 2. Let L be the language accepted by the partial DFA A,. Then we have
mpe(L) = sc(Ay) if and only if the Boolean formula ¢ is satisfiable. The same
holds true for the measure mpc(L).

T A finite automaton A is bideterministic if it is both partially deterministic and
partially co-deterministic and has a sole accepting state. Here A is partially co-
deterministic if the reversed automaton obtained by reversing the transitions of A
is partially deterministic.

11



a.b,# ¥

Fig.5: Part of the partial DFA constructed from the skeleton graph with the
help of coupling and clause gadgets. Here n = 3 and m = 3. A Hamiltonian
s-t-path p is indicated with boldface transitions and any word w that fits to p
is depicted with boldface letters on the transitions.

The complete automaton for A, and sc(A,,) is a no instance of the PUMPING-
PROBLEM w.r.t. Lemma 1 (Lemma 2, respectively) if and only if the Boolean
formula ¢ is unsatisfiable. Thus the PUMPING-PROBLEM for DFAs is coNP-hard.

O

Putting the results together we get:

Corollary 15. Given a DFA A and a natural number p, it is coNP-complete
to decide whether for the language L(A) the statement of Lemma 1 (Lemma 2,
respectively) holds for the value p. a
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Appendix

Proof (of Theorem 3). For the first statement we argue as follows: let p; be the
ith prime number (counting 2 as the first). Then consider the unary language

L; = a(a?)* 4+ a(aPi*+1)*.

The language L; is accepted by a (14p;+p;+1)-state automaton A which consists
of an initial state that is connected to two cycles of p; and p;;1 states, where
the first state in the cycles is accepting. Hence, nsc(L;) < 1+ p; + pi+1. On the
other hand, L; is accepted by a minimal DFA with p; - p;+1 states which consists
of a single cycle and properly chosen final states. Since L; is unary, this implies
that mpe(L;) = sc(L;) = p; - piy1. For i > 2 it holds 1 + p; + pir1 < pi - Pit1
which implies the stated claim.

The second statement is seen by considering the nondeterministic state de-
vices A, = (Qn, Xn, ‘n 0, Q@n), where the set of states Q, = {q0,¢1,---,qn},
the input alphabet X, = {a; | 1 <i < n}, the initial state ¢, and the transition
function is specified by

— qona; ={qi}, for 1 <i<n,
— qina; ={¢}, for 1 <i<n,
— i 'n @it1 = {Git1}, for 1 <i < n, and ¢, - a1 = {q1 }.

The NFA A, is depicted in Figure 2; note that A, is in fact partially determin-
istic.

Let L, = L(A,). First we show that mpe(L,) = 3. Observe, that by con-
struction, any word that reaches a state ¢; with 1 <1 < n after two letters can
be pumped using the first letter. Thus, such a word starts with a;a;, a;a;41, or
anay. If the word under consideration does not start with any of these prefixes,
then after reading the second letter the computation of the NFA cannot be con-
tinued and the word is not accepted. But none of these two-letter words can be
pumped (not by the first letter, the second, nor by the whole word of length
two). In this case a third letter is required in order to get a word that can be
pumped, namely by its third letter. Thus, mpe(L,) = 3 as required.

In order to prove the result on the nondeterministic state complexity we use
the so called extended fooling set technique, which was introduced in [2] and is
defined as follows—compare also with [5]: A set S = {(z;,y;) |1 <i<mn}isan
extended fooling set for the regular language L C X*, if

1. z;y; € L for 1 <1i < n, and
2. 1 # j implies x;y; € L or zjy; € L, for 1 < 4,5 < n.

Then any NFA accepting the language L has at least n states, i.e., nsc(L) > n.
Consider the following set of pairs of words

S={(a;,a;) |1 <i<n}.

Obviously a;a; is a member of L,, for 1 < ¢ < n. It remains to verify the
second property of being an extended fooling set. To this end assume that 7 < j.

14



Consider any two pairs (a;, a;) and (a;,a;) with 1 <4 < j < n. Observe that all
words aja; are not in L, for j # n or i # 1. For j =n and i = 1 we see that the
word aia, is not in L,, since n > 3. Thus, S is an extended fooling set for L,, of
size n. Therefore any NFA accepting L,, requires at least n states. This proves
the stated claim. a

Proof (of Lemma 6). To show that the problem is in coNP, we define the unary
NFA

Aw = (Qv {a}v 'uMQé)aFI)

with ¢} = qo, and for p,q € Q let p-ya > ¢, if p-y > p, and finally F/ = F. By
construction of A,, we find

w' € L(A) if and only if o' € L(A,),

for t > 0. Thus, if L(A,) is universal, i.e., L(4,) = a*, then every word w!, for
t > 0 belongs to the language L(A), and therefore the word w can be pumped.
Otherwise, there is a ¢t such that a’ is not in L(A,), which implies that w’ is
not in L(A). Thus, in turn

w' € L(A), for every t >0, if and only if L(A,)=a".

We note, that for the hardness the special case X' = {a} and w = a is equal to
the universality problem for unary NFAs, which is coNP-complete by [17].

For the variant of the problem where A is deterministic, we note for the
upper bound that the construction of A, gives a unary DFA in this case, and
for the complexity lower bound that the universality problem for unary DFAs is
well known to be L-complete. a

Proof (of Theorem 7). Let ¢ = \/I, C; be a formula in 3DNF, and let n de-
note the number of variables. We can assume without loss of generality that no
clause C; contains both x; and Z; as a literal, and that each variable occurs in
at least one of the clauses, which implies 3m > n.

For each clause Cj, let ¢; = (1Cia -+ Cin - {0,133~ C {0,1}3™, where

(0+1) if both z; and Z; are not literals in Cj,
Gj =140 if 7; is a literal in Cj,
1

if z; is a literal in Cj.

Let ¢ = (1 + 2+ -+ (. It is easy to construct NFAs A, accepting the
language (;, each having 3m + 1 states. Merging the start states of these NFAs
into a single state yields a new NFA A, accepting the union of these languages.
This yields a total of O(m?) states.

Clearly, Z = L(A,) C {0,1}*™. Let w in {0,1}". Then w is the prefix of a
word in Z if and only if w satisfies some clause C;. Thus Z = {0,1}3™ if and
only if ¢ is a tautology. This completes the reduction. ad
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Proof (of Lemma 8). We distinguish two cases:

1. If o is a tautology, then we have Y = {0,1}3™ -4 - X* and therefore the mini-
mal pumping constant is 3m+2, because the smallest word is of length 3m+1
and ends with # but pumping cannot be performed since pumping a sub-
word within the prefix not containing # would alter the length of the prefix,
which must be of length 3m. Pumping a subword containing the # symbol
would reproduce it several times, or zero times. In all cases the word ob-
tained by pumping is not in Y. In contrast to that all words of length at
least 3m + 2 can be pumped by the subword which contains only the last
symbol. Therefore the minimal pumping constant w.r.t. Lemma 1 is 3m + 2.

2. On the other hand, if ¢ is not a tautology, then there is an assignment
under which ¢ evaluates to false. Hence, there is a word w € {0,1}" that
corresponds to that assignment and is not prefix of a member of L(A,). But
then any word in the set w{0, 1}3m_"#Tp requires length at least 3m+1+p
to become pumpable w.r.t. Lemma 1. Since all words in Y whose length n
prefix describes a satisfying assignment are pumpable if they are at least of
length 3m + 2 by a similar argument as in the first case. Thus, the minimal
pumping constant for Y w.r.t. Lemma 1 is 3m + 1 + p in this case.

This completes this proof. O

Proof (of Theorem 11). First consider the case where A is a DFA. Since NL is
closed under complementation it suffices to prove that there are two words wy
and wy in L(B) such that the states qo - w1 and go - we are distinguishable
in A. This means that w; and ws are not equivalent w.r.t. the Myhill-Nerode
relation ~p(4y. This can be done by nondeterministically guessing these two
words in logspace in a letter-by-letter fashion and determining ¢ - wy and g - wo
and finally asking for non-equivalence of these two states, which is known to be
an NL-complete problem. Thus the containment within NL follows. For the NL-
hardness we argue as follows: observe, that (A, B) with L(B) = X* is a positive
instance of the problem in question if and only if L(A) = X*. Hence this is a
reduction from the NL-complete universality problem for DFAs. Thus, the stated
claim follows.

If Ais an NFA, we determinize it with the well-known powerset construction
in order to obtain an equivalent DFA and run the above NL-algorithm. Since
the determinized automaton is of exponential size and can be reconstructed on
demand, the PSPACE upper bound follows. The PSPACE-hardness follows with
the same reduction as given above, since the universality problem for NFAs is
PSPACE-complete. a

Proof (of Theorem 12). The containment of the problem within PSPACE = AP is
seen as follows: on input (A, 1P) an alternating polynomial time Turing machine
first universally guesses a word w of length p. Then it existentially guesses a
decomposition w = zyz with x € X*, y € ¥*, and z € X* and constructs an
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NFA B accepting the set xzy*z. Finally, it verifies whether (A, B) is a positive
instance of the generalized state equivalence problem. By Theorem 11 this can
be done in alternating polynomial time, since A is an NFA. If this is a positive
instance the Turing machine halts and accepts; otherwise it halts and rejects.
Finally we show that the PSPACE-hardness follows from the PSPACE-complete
universality problem for NFAs. To this end, let A be the instance of the universal-
ity problem. Then we verify in deterministic logspace, whether the empty word
belongs to L(A). If this is the case the reduction outputs A and value p = 1;
otherwise it outputs an automaton accepting the language {\} and also the
value p = 1, where X is the empty word. Then by the fact that mpe(L) = 1 if and
only if L is equal to the empty set or the full set, as mentioned at the beginning
of this section, the desired hardness follows. a

Proof (of Theorem 13). First let us consider the PUMPING-PROBLEM w.r.t.
Lemma 1. Recall the proof of Theorem 5, where on an NFA input a coNP Turing
machine with a coNP oracle for the inclusion problem of some w* in a language
accepted by an NFA is used. In the case where A is a DFA, we still need a coNP
Turing machine but now the access to a logspace oracle by Lemma 6 suffices,
thus putting the problem in coNP" = coNP.

Next we turn our attention to the PUMPING-PROBLEM w.r.t. Jaffe’s pump-
ing lemma. A Turing machine solves the problem in question as follows: first
it universally guesses a word w of length p. Then it cycles through all decom-
positions w = ryz with w € X*, y € ¥, and 2z € ¥*, constructs an NFA B
accepting zy*z, and verifies in deterministic polynomial time whether (A, B) is a
positive instance of the generalized state equivalence problem—see Theorem 11.
If this is the case the Turing machine halts and accepts; otherwise it continues
with the next decomposition in the enumeration cycle. In case the cycle ends
without finding a positive instance, then the Turing machine halts and rejects.
This proves the containment within coNP. a

Proof (of Claim 1). The automaton A, is partially deterministic and a close
inspection of its construction reveals that it is co-deterministic, too. Moreover,
since it has unique accepting state it is bideterministic. Then the automaton
obtained from A, by introducing a non-accepting sink state that collects all
non-specified transitions, is minimal according to [1, 14]. O

Proof (of Claim 2). Recall that the Boolean formula ¢ is satisfiable if and only
if there is a Hamiltonian cycle or equivalently a Hamiltonian s-t-path in the
directed graph associated with the skeleton graph G,. Note that the Hamiltonian
property always applies to the partial automaton.

Assume first that there is no Hamiltonian s-t-path. Then the longest path
of the completed automaton A, (starting in its initial state) is strictly less than
¢ := sc(A,) — 1. This is seen as follows: for the longest path in the complete
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automaton A, starting in the initial state there are two possibilities, namely,
the path ends in the accepting state or in the non-accepting sink state. We
distinguish these two cases:

1. In the former case, we have an s-t-path but it is not Hamiltonian by assump-
tion. Thus, the path length is strictly less than sc(A,)—1. The non-accepting
sink state cannot be used to prolong this path.

2. For the latter case, where the longest path ends in the non-accepting sink
state, we can exclude the accepting state to be part of this path: namely,
each transition leaving ¢ enters the start state by construction of the au-
tomaton A, and the start state can occur only once in the path. Now let ¢
denote the state that precedes the accepting state, i.e., g is the state satis-
fying q -4, # = t. In the sub-case where ¢ is part of the path, then it must
precede the non-accepting sink state in the path, since each transition leav-
ing q enters either the sink state, or the accepting state, and we have just
ruled out that the latter is part of the path. Hence we can alter the path by
changing the last step from ¢ now towards ¢ instead of moving towards the
non-accepting sink state without changing the path length. Thus, we have
constructed another longest path, this time ending in ¢. From the discussion
of Case (1) above the length of a longest path is strictly less than sc(A4,)—1
in this sub-case. In the other sub-case, where ¢ is not part of the path, then
it may contain all states of A, except for ¢ and ¢, together with the non-
accepting sink state. These are sc(A,) — 2 states. Hence the length of the
path is strictly less than sc(A,) — 1. Thus, by Lemma 4 we deduce that
mpe(L) < £+ 1 = sc(A,). On the other hand, if there is a Hamiltonian
s-t-path we conclude that mpe(L) < sc(Ay), since the longest path of the
partial device A, (and also of its completed version) is equal to sc(A,) — 1
in this case.

In order to prove the statement that the Boolean formula ¢ is satisfiable if
and only if there is a Hamiltonian s-t-path if and only if mpe(L) = sc(4,) it
suffices to give a witness showing that mpe(L) > sc(Ay). Now assume that there
is a Hamiltonian s-t-path p. Every path p induces several words, if an edge with
both labels a and b is traversed. We choose a word w that fits the path p as
follows: whenever the path p traverses an edge with a sole letter, this symbol is
used, while for edges with two letters a and b the letter that corresponds to the
previous letter induced by the path p is preferred. If we apply these rules, then
the word w induced by the Hamiltonian s-t path indicated in Figure 3 (partially
also shown in Figure 5) reads as follows:

w = #a #a® - #LH# - #aPH#a® - #aP#bbaa’ #aab
- Haab#a® #b°#bba#b°#a® - #bbbbb#aab#bFbba.

By construction this belongs to the language L(A,). We prove that the word w
of length sc(A,) — 1 is such a desired witness—the following argument does not
require that the word w is constructed as described above.
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Consider any decomposition of w into z € X*, y € X7, and z € X* with
w = xyz. We show that y fails to be pumped in w. To this end let ¢, = s-4, @
and ¢, = s-a, vy. Observe, that ¢, is different from g, since otherwise w
does not fit to a Hamiltonian s-t-path. Because w is a member of L(A,) by the
computation
S A, W={z A, Y2 =qay A, 2 =1,

it suffices to show that zz is not in L(A,). Assume to the contrary that zz
belongs to the language under consideration. Then s -4, 22 = ¢z -4, 2 = t. Be-
cause, A, is bideterministic the word z can only be accepted from the state gy, .
Hence, we conclude that g, = gu. This is a contradiction to the property of g,
and g, of being different states. Hence, any non-empty sub-word of w cannot be
pumped. Therefore, mpe(L) > |w| = sc(A,) — 1, which gives mpe(L) > sc(A,)
and proves the stated claim.

Since mpc(L) < mpe(L) holds for every regular language, and the above ar-
gumentation applies to a word w accepted by A, the statement is also valid for
the other pumping constant w.r.t. Lemma 1. O
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