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On Balanced Separators, Treewidth, and Cycle Rank
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We investigate relations between different width parameters of
graphs, in particular balanced separator number, treewidth, and
cycle rank. Our main result states that a graph with balanced
separator number k has treewidth at least k but cycle rank at
most k ·

(
1 + log n

k

)
, thus refining the previously known bounds,

as stated by Robertson and Seymour (1986) and by Bodlaender
et al. (1995). Furthermore, we show that the improved bounds are
best possible.

Keywords: vertex separator, treewidth, pathwidth, bandwidth, cycle rank, ordered coloring, vertex
ranking, hypercube
MSC2010: 05C40, 05C35

1. Preliminaries

Throughout this paper, log x denotes the binary logarithm of x, and lnx denotes the natural
logarithm of x.

1.1. Vertex separators

We assume the reader is familiar with basic notions in graph theory, as contained in [8]. In a
connected graph G, a subset X of the vertex set V (G) is a vertex separator for G, if there exists a
pair x, y of vertices lying in distinct components of V (G) −X, or if V (G) −X contains less than
two vertices. Beside vertex separators, also so-called edge separators are studied in the literature.
As we shall deal only with the former kind of separators, we will mostly speak just of separators
when referring to vertex separators.

If G has several connected components, we say X is a separator for G if it is a separator
for some component of G. A separator X is (inclusion) minimal if no other separator is properly

contained in it. A separator X is balanced, if every component of G\X contains at most
⌈
|V (G)|−|X|

2

⌉
vertices; and it is called strictly balanced, if every component of G \X contains at most |V (G)|−|X|

2
vertices.

Lemma 1.1. Let G be a graph with a balanced separator of size at most k. Then G has a balanced
separator of size exactly k.

Proof. Assume X is a balanced separator of size x < |V (G)|. Then we can extend S to a balanced
separator of size x+1 as follows: Let C1, C2, . . . be the components of G−X, ordered by decreasing
cardinality. Let v be any vertex in the largest component C1. We claim that X ∪ {v} is again a
balanced separator for G. Namely, we have

|C1 \ {v}| ≤
⌈
|V (G)| − |X|

2

⌉
− 1 ≤

⌈
|V (G)| − |X ∪ {v}|

2

⌉
.
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The components Ci in G−X with i ≥ 2 are also components of G−(X∪{v}), so it remains to bound

the cardinality of C2. The latter is the second largest component of G−X, thus |C2| ≤
⌊
|V (G)|−|X|

2

⌋
,

and consequently

|C2| ≤
⌊
|V (G)| − |X ∪ {v}|+ 1

2

⌋
≤
⌈
|V (G)| − |X ∪ {v}|

2

⌉
.

For the components Ci with i > 2, we have of course |Ci| ≤ |C2|, and the proof is completed.

Arguably, the very first result on graph separators, proved by Jordan [14] in the 19th century,

is most naturally phrased in terms of non-strictly balanced separators: every tree admits a balanced

separator consisting of a single vertex. However, the usage of strictly balanced separators seems

predominant in the more recent literature (see e.g. [3, 16, 21]), perhaps for the reason that the use

of the ceiling operator dxe seems unappealing. But the monotonicity property stated in Lemma 1.1

ceases to be true for strictly balanced separators. This is already witnessed by very simple examples,

such as P2k+1, the path graph of odd order 2k + 1. In any case, we can always turn a balanced

separator into a strictly balanced separator by adding at most one vertex.

The (strict) balanced separator number of a graph G, denoted by s(G) (resp. s̃(G) for the

strict version), is defined as the smallest integer k such that for every Q ⊆ V (G), the induced

subgraph G[Q] admits a (strictly) balanced separator of size at most k. Observe that for any

graph G, we have s(G) ≤ s̃(G) ≤ s(G) + 1.

1.2. Width parameters

The cycle rank of a graph G, denoted by r(G), is a structural complexity measure on graphs and

is inductively defined as follows: If G has no edges, then r(G) = 1; if G has several components,

then r(G) is the maximum cycle rank among the connected components of G; otherwise, r(G) =

1 + minv∈V (G) r(G − v). It easily follows from the definition of cycle rank that for every vertex

v ∈ V (G) holds r(G − v) ≤ 1 + r(G), and similarly r(G − X) ≤ |X| + r(G − X) for every vertex

subset X ⊆ V (G).

The notion of cycle rank was originally devised by Eggan and Büchi [9] as a notion on digraphs,

and appears in the literature under many different names, such as ordered chromatic number [15],

vertex ranking number [2], tree-depth [19], or minimum elimination tree height [3, 17]. Although all

these notions ultimately refer to the same concept, some sources use a different normalization. For

instance, the minimum elimination tree height of a graph is equal to the cycle rank minus 1.

Other structural complexity measures studied in this paper include the treewidth and path-

width of graphs; more background information on these two measures can be found in [1, 16, 22].

For a graph G, let V = {U1, U2, . . . , Ur } be a collection of subsets of V (G). A tree T = (V,E)

with vertex set V is called a tree decomposition, if all of the following hold: (i) The collection V

covers the vertex set of the graph G, in the sense that V =
⋃

U∈V U ; (ii) For every edge (u, v) ∈ E,

there is a tree node U ∈ V such that both u and v are in U ; and (iii) If two tree nodes U1 and

U2 are connected in the tree by a path, then U1 ∩ U2 is a subset of each tree node visited along

this path. The width of a tree decomposition T = (V,E) is defined as max{ |U | − 1 | U ∈ V }, and

the treewidth of G is defined as the minimum width among all tree decompositions for G. A path

decomposition is a tree decomposition where T is required to be a path graph; and the pathwidth

of G is the minimum width among all path decompositions for G.
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2. Main Results

We recall the following well-known result [3, Thm. 11], which relates the strict balanced separator

number s̃(G), treewidth tw(G), pathwidth pw(G), and the cycle rank r(G) of a graph G:

Theorem 2.1. Let G be a graph of order n ≥ 2, let s̃(G) denote its strict balanced separator

number, let tw(G) and pw(G) denote its treewidth and pathwidth, respectively, and let r(G) denote

its cycle rank. Then

s̃(G)− 1 ≤ tw(G) ≤ pw(G) ≤ r(G) ≤ 1 + s̃(G) · log n.

As Bodlaender et al. [3] note, the bounds stated in this theorem are spread across the literature,

and (variations of) some of these bounds were discovered independently by several groups of authors.

Known examples of graphs having a logarithmic gap between treewidth and pathwidth are the

complete binary trees of order 2d − 1, which have treewidth 1 but pathwidth dd/2e, see [22, 23].

For the relation between pathwidth and cycle rank, a similar role is played by the path graphs of

order n, which have pathwidth 1 but cycle rank 1 + blog nc, see [18]. Indeed, the cycle rank of trees

of order n can be no larger than this [15]. But observe that the strict balanced separator number of

a path of order n equals 2 for n ≥ 4, so Theorem 2.1 gives only an upper bound of 2 · (1 + log n) for

all trees of diameter at least 3. Comparing this with the upper bound on the cycle rank of trees [15]

noted above, we see that the former bound is a forteriori unsharp by a factor 2. The situation is

even worse for graphs whose balanced separator number is linear in n, such as complete graphs or

expanders: their cycle rank can trivially be at most n. So the estimate is off by a factor of Ω(log n)

in this case. Therefore, our first aim will be to refine the rightmost inequality of Theorem 2.1.

The following recurrence will play a crucial role in our investigation.

Definition 2.2. For integers k, n ≥ 1, let Rk(n) be given by the recurrence

Rk(n) = k + Rk

(⌈
n− k

2

⌉)
,

with Rk(r0) = r0 for r0 ≤ k.

As it turns out, the function Rk(n) can serve as upper bound on the cycle rank of a graph in

terms of its order and its balanced separator number:

Lemma 2.3. Let G be a graph of order n whose balanced separator number is at most k. Then for

the cycle rank r(G) holds

r(G) ≤ Rk(n).

Proof. The overall structure of the argument is the same as e.g. in [3, 19], but here we derive a

somewhat stronger statement. We prove the statement by induction on the order n of G. The base

cases n ≤ k of the induction are easily seen to hold, since the cycle rank of a graph is always

bounded above by its order.

For the induction step, assume n > k. Let X be a balanced separator for G of size exactly k.

Using Lemma 1.1, we know that such a separator exists. Denote the connected components of

G − X by C1, . . . , Cp. Then r(G) ≤ k + r(G − X), and by definition of cycle rank, r(G − X) ≤
maxp

i=1 r(G[Ci]). As X is a balanced separator, we have |Ci| ≤ dn−k2 e for 1 ≤ i ≤ p, so we can apply

the induction hypothesis to obtain maxp
i=1 r(G[Ci]) ≤ Rk(dn−k2 e). Putting these pieces together, we

have r(G) ≤ k + Rk(dn−k2 e), as desired.
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In fact, we shall see in a moment that this bound is best possible for all k and each n ≥ k+1. As
in [6], let P k

n denote the the kth power of a path graph of order n, in which two distinct vertices u, v
in V (Pn) = 1, 2, . . . , n are adjacent iff |v − u| ≤ k. Determining the cycle rank of this graph is a
question recently posed by Novotny et al. [20] and subsequently answered by Chang et al. [5]:

Theorem 2.4 (Chang et al.). Let k, n ∈ N, and let P k
n denote the kth power of a path of order n.

Then

r
(
P k
n

)
= Rk(n).

Since the function Rk(n) from Definition 2.2 is arguably very important to our context, we
will devote more effort to understanding this recurrence. Chang et al. [5] also derive an explicit
formula, namely

Rk(n) =

{
n , if k ≥ n− 1

k · (
⌊
log
(
1 + n

k

)⌋
− 1) +

⌈
n+k

2blog(1+
n
k )c

⌉
, if k ≤ n− 2

(1)

Now we can compute each value of Rk(n) for given values of k and n effortlessly. However, the for-
mula is somewhat unwieldy. This calls for a more convenient expression for reasoning about Rk(n).
Therefore, we shall derive an easier upper bound in closed form. For each fixed k, that upper bound
is sharp infinitely often, so our estimate is essentially the best possible.

Theorem 2.5. Let k, n ≥ 1 be integers. Then

Rk(n) ≤ k ·
(

1 + log
n

k

)
,

with equality iff n = k · (2j − 1) for some j ∈ N \ {0}.

Proof. Instead of analyzing the recurrence Rk(·) directly, we first look at the problem from a
different perspective. To this end, for a given positive integer r, let Nk(r) denote the smallest
integer n such that Rk(n) ≥ r. Then by Rk(2r + k − 1) = Rk(2r + k) = k + Rk(r), we have
Nk(r + k) = 2 ·Nk(r) + k − 1, and the recurrence terminates with Nk(r0) = r0 for r0 ≤ k.

To get a closed form for Nk(r), we make some use of finite calculus (see [11]): The backward
difference of Nk, denoted by ∇Nk, is defined as ∇Nk(i) = Nk(i)−Nk(i− 1). For convenience, let
us define Nk(0) = 0, such that ∇Nk(1) is well-defined.

Claim 2.5.1. For all integers i, j with i ≥ 1 and (i− 1) · k < j ≤ i · k holds

∇Nk(j) = 2i−1.

Proof. We prove this by induction on i. The base cases where i = 1 and j ≤ k are easily verified,
so it remains to perform the induction step. For (i− 1) · k < j ≤ i · k, we have

∇Nk(j) = 2 ·Nk(j − k) + k − 1− 2 ·Nk(j − 1− k)− k + 1(2)

= 2 · ∇Nk(j − k)(3)

= 2 · 2i−2,(4)

where the last step above holds by induction hypothesis, since (i− 2) · k < j − k ≤ (i− 1) · k. This
completes the proof of the claim.
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Now that we have a closed form for the backward differences, it is not difficult to derive a
closed form for Nk(r).

Claim 2.5.2. For all integers k, r ≥ 1 holds

Nk(r) = (k + r mod k) · 2(r−r mod k)/k − k.

Proof. Telescoping sums yields Nk(r) = Nk(r)−Nk(0) =
∑r

i=1∇Nk(i). Write r as r = k ·s+ t with
s = r div k and t = r mod k. We arrive at a simplified form for Nk(r) by grouping the summands
appropriately, and by rewriting those using Claim 2.5.1 afterwards:

Nk(r) =

s∑
i=1

∑
j>(i−1)·k
j≤i·k

∇Nk(j) +

r∑
j=s·k+1

∇Nk(j)(5)

=

s∑
i=1

(
k · 2i−1

)
+ t · 2s = k · (2s − 1) + t · 2s.(6)

= (k + r mod k) · 2(r−r mod k)/k − k.(7)

In the last line, we made use of the facts t = r mod k and s = r−r mod k
k .

Resolving this formula after r would result in the unhandy formula (1) by Chang et al. [5]. We
thus resort to giving an upper bound that is tight infinitely often.

Claim 2.5.3. For all integers k, r with k ≥ 2 and r ≥ 1 holds

Nk(r) ≥ k · (2r/k − 1),

with equality iff r mod k = 0.

Proof. To prove our claim, we consider the univariate real-valued function fk,r given by

fk,r(x) = (k + x) · 2(r−x)/k − k,(8)

with k and r positive real numbers greater than 1. Differentiating after x gives

f ′k,r(x) = 2(r−x)/k ·
(

1−
(

1 +
x

k

)
· ln 2

)
.(9)

An easy computation yields f ′k,r(x) ≥ 0 if and only if x ≤ k · (1/ ln 2− 1), so the function
fk,r(x) has a unique maximum at x0 = k · (1/ ln 2− 1), and it is monotonically increasing (resp.
decreasing) for x < x0 (resp. x > x0). Now let us restrict the domain of fk,r to the closed interval
I = [0; k − 1]. Since 0 < 1/ ln 2− 1 < 1/2, the number x0 is contained within I for k ≥ 2.

Elementary calculus shows that this restricted function will attain its absolute minimum at
the left or right boundary of I. Let us calculate which one is the case here:

fk,r(k − 1)− fk,r(0) = k · 2r/k ·
((

2− 1

k

)
· 2(−k+1)/k − 1

)
.(10)

By evaluating the right-hand side at k = 1 and by differentiating after k, we can deduce that
this expression is strictly greater than 0 for all real-valued k > 1. Thus, fk,r(k − 1) > fk,r(0), and
we conclude that the function fk,r : I → R attains its absolute minimum at x1 = 0.
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We return to the function Nk(r), whose domain are the positive integers. Recall that Claim (2.5.2)
states that

Nk(r) = (k + r mod k) · 2(r−r mod k)/k − k.

Combining this with (8), we get

Nk(r) = (k + r mod k) · 2(r−r mod k)/k − k = fk,r(r mod k).(11)

We saw above that the function fk,r(·), when restricted to the interval [0; k−1], attains its absolute
minimum for x1 = 0. So we can deduce that

Nk(r) ≥ fk,r(0) = k · (2r/k − 1)

holds for all r ≥ 1 and k ≥ 2, and that equality holds if and only if r mod k = 0. This completes
the proof of the claim.

We are finally in position to analyze the recurrence Rk(n). The special case k = 1 is well known
and not difficult to prove by induction (see e.g. [18]), so in the following we assume k ≥ 2. For a
given integer n, let r = Rk(n). Using the definition of the function Nk(r) and Claim 2.5.3, we have

n ≥ Nk(r) ≥ k · (2r/k − 1),(12)

with both inequalities being sharp iff n = Nk(r) and r mod k = 0. From Claim 2.5.2, we can derive
that the latter two conditions are in turn equivalent to the requirement that n = k · (2j − 1) for
some j ∈ N.

With r = Rk(n), we can solve Ineq. (12) after r to get Rk(n) ≤ k ·
(
1 + log n

k

)
, with equality

iff n = k · (2j − 1) for some j ∈ N \ {0}. This completes the proof of Theorem 2.5.

The above result settles the relation between balanced separator number and cycle rank. We
turn our attention to the other end of the chain of inequalities in Theorem 2.1, namely to the
relation between balanced separator number and treewidth. Here the optimal inequality will follow
by refining a known result.

Recall that a graph is called chordal iff every cycle C of order greater than 3 in G has a chord,
i.e., an edge connecting two vertices not adjacent in C. In other words, a chordal graph has no
induced cycle of order greater than 3.

In the following, we derive a strengthened version of a theorem originally due to Gilbert et
al. [10]—these authors employed a looser notion of balanced separator.

Theorem 2.6. Let G be a chordal graph whose largest clique has order p. Then G contains a clique
of order at most p− 1 that is a balanced separator for G.

Proof. The proof follows the one given by Gilbert et al. [10] for a similar statement. If G itself is a
clique, then removing a single vertex yields a balanced separator of order |V (G)| − 1 = p − 1. So
we assume in the following that G is not a clique.

Choose C to be the clique in G which minimizes the maximum order among the connected
components of G− C; in case there are several such cliques, take C itself to be of minimum order
among these cliques. Our aim is to show that then C is a balanced separator for G. Let A be
a component of G \ C that is of maximum order. The capstone of the original proof consists of
deriving the following:

Fact [10]. Component A contains a vertex v adjacent to all vertices in C.
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For a proof of this, the reader is referred to [10, Fact 3]. Notice that this fact implies that |C| ≤
p − 1, and thus it only remains to show that |A| ≤

⌈
|V (G)|−|C|

2

⌉
. For the sake of contradiction,

assume this is not the case. Then, letting B = V (G) \ (C ∪ A), we must have |A| > |B|, and thus
|B| ≤ |A| − 1. Take a vertex v ∈ A that is adjacent to all vertices in C. Then G − (C ∪ {v}) falls
apart into the disconnected subgraphs G[A] − v and G[B], and the maximum order among the
connected components of G − (C ∪ {v}) is at most |A| − 1. Thus, the clique C ∪ {v} would have
been preferable to C, a contradiction.

It is well known that if a graph has treewidth at most k, then G is subgraph of some chordal
graph whose largest clique is of order at most k+ 1, compare [1, 22]. The following corollary is now
immediate:

Corollary 2.7. For any graph G, we have s(G) ≤ tw(G).

Again, for every possible value of s(G), there are infinitely many graphs for which this bound
is tight, as witnessed by the kth power of a path P k

n . Also, the inequality is tight in the case
of trees. In this way, Corollary 2.7 gives a proper generalization of Jordan’s classical result on
balanced separators in trees [14]. Since s̃(G) ≤ s(G) + 1, Corollary 2.7 also implies the inequality
s̃(G) ≤ tw(G) + 1 given by Robertson and Seymour [21, Proposition 2.5]. Observe that the latter
inequality is off by 1 for all trees containing a path of order 4.

Taking the statements of Lemma 2.3, of Theorem 2.5, and of Corollary 2.7 together, we have
the following improvement over Theorem 2.1:

Theorem 2.8. Let G be a graph of order n ≥ 2, and let s(G) denote its balanced separator number,
let tw(G) and pw(G) denote its treewidth and pathwidth, respectively, and let r(G) denote its cycle
rank. Then

s(G) ≤ tw(G) ≤ pw(G) ≤ r(G) ≤ s(G) ·
(

1 + log
n

s(G)

)
.

3. Applications

An immediate consequence of Theorem 2.8 is a tight upper bound for the cycle rank of a graph in
terms of its treewidth:

Corollary 3.1. Let G be a graph of order n ≥ 2, and let tw(G) and r(G) denote its treewidth and
its cycle rank, respectively. Then

r(G) ≤ tw(G) ·
(

1 + log
n

tw(G)

)
.

Quite obviously, an analogous statement holds for cycle rank versus pathwidth. Our next
application concerns the relation between the cycle rank and another width parameter for graphs,
namely the bandwidth. The latter is defined in the following.

A linear layout of a graph G of order n is a bijection ` of V (G) into the integer interval [1;n].
The bandwidth of a linear layout ` is defined as max{u,v}∈E(G) |`(v) − `(u)|; and the bandwidth of
G, denoted by bw(G), is defined as the minimum bandwidth among all linear layouts for G.

The bandwidth of a graph is known to be bounded below by its pathwidth, see e.g. [1, Thm. 44],
so the latter is a common lower bound for both cycle rank and bandwidth. But how are these two
related? It is not difficult to prove that the bandwidth of the star graph K1,n on n + 1 vertices
equals bn+1

2 c, cf. [22]. On the other hand, it is clear that r(K1,n) = 2, so there seems to be no
interesting upper bound on the bandwidth of a graph in terms of its cycle rank. For the converse
direction, we obtain the following result as a corollary to Theorem 2.4:
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Corollary 3.2. Let G be a graph of bandwidth at most k. Then

r(G) ≤ Rk(n),

and this bound is tight if G is the kth power of the path graph of order n.

Proof. A basic fact about the bandwidth bw(G) of a graph G of order n is that bw(G) ≤ k iff G

is isomorphic to a subgraph of P k
n [6]. Now we have r(P k

n ) = Rk(n), and the cycle rank can never

increase when taking subgraphs.

As a final application, we determine a sublinear upper bound on the cycle rank of the d-

dimensional hypercube. Recall that the vertex set of the d-dimensional hypercube is {0, 1}d, and two

vertices are adjacent, if their vector representations differ in exactly one coordinate. Bounding the

cycle rank of this graph from below has turned out to be useful in formal language theory, namely

for comparing the relative succinctness of different variants of the regular expression formalism,

see [12].

Theorem 3.3. Let Hd denote the d-dimensional hypercube of order n = 2d. Then

r(Hd) = O

(
n log logn√

log n

)
.

Proof. Harper [13] proved that for the bandwidth of the d-dimensional hypercube holds

bw(Hd) =

d∑
i=0

(
d

bd/2c

)
.

Using Stirling’s approximation, one can show that this sum is in Θ(d−1/22d). To estimate the cycle

rank of this graph, we use Corollary 3.2 and Theorem 2.5 to obtain:

r(Hd) ≤ bw(Hd) · log

(
2d

bw(Hd)

)
(13)

= O

(
d−1/2 · 2d · log

2d

Θ
(
d−1/22d

))(14)

= O

(
n log logn√

log n

)
,(15)

as desired.

As observed in [12], the hypercube of order n has cycle rank at least Ω( n√
logn

), so this upper

bound is tight up to a factor of O(log log n). In contrast, utilizing the known fact that the pathwidth

of the hypercube is equal to its bandwidth [4] together with the previously known upper bound

from Theorem 2.1 would result in an upper bound that even exceeds the trivial upper bound of n.

Acknowledgement The author would like to thank Petra Scheffler for sending him a copy of [22]

and [23].
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