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Abstract

We investigate the grammatical complexity of finite languages w.r.t. context-free gram-
mars and variants thereof. It is shown that the minimal number of productions necessary for
a finite language encoded by a context-free grammar cannot be approximated within a ratio
of o(nd), for all d ≥ 1, unless P = NP. Here, n is the length of longest word in the finite
language. Similar inapproximability results hold for linear context-free and right-linear (or
regular) grammars.

1. Introduction

Questions regarding the economy of descriptions of formal languages by different formalisms
such as automata, grammars, and formal systems have been studied quite extensively in the
past, see, e.g., [13, 14]. The results in [4] mark the starting point of a theory of the gram-
matical complexity of finite languages where the chosen complexity measure is the number of
productions. In particular, [4] gives a relative succinctness classification for various kinds of
context-free grammars. Further results along these lines can be found in [1, 2, 3, 15] as well as
some newer ones in, e.g., [6, 7, 9, 10]. It is worth mentioning that in [10] a method for proving
lower bounds on the number of productions for context-free grammars was developed. For in-
stance, it was shown that the set of all squares of a given length requires an exponential number
of productions to be generated by a context-free grammar.

More recently, it was shown that there is a close relationship between a certain class of
formal proofs in first-order logic and a certain class of (tree) grammars. In particular, the num-
ber of productions in such a grammar corresponds to the number of certain inference rules in
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the proof [12, 8]. This correspondence sparked our interest in further investigating questions re-
garding the grammatical complexity of finite languages. The main result of this paper is that the
minimal number of productions necessary for a finite language encoded by a context-free gram-
mar cannot be approximated within a ratio of o(nd), for all d≥ 1, unless P=NP. Here, n is the
length of a longest word in the finite language. This result nicely generalizes the inapproxima-
bility of the smallest grammar problem with approximation ratio less than 8569

8568 unless P = NP

from [5]. Here, the smallest grammar problem asks for the smallest (in terms of the number
of productions) context-free grammar that generates exactly one given word. As a byproduct
of our inapproximability result, we show that the set of all cubes of a given length requires an
exponential number of productions using elementary methods already developed in [4]. To be
more precise, the language Tn = {w$w#w | w ∈ {0,1}n } requires Θ(2n) context-free produc-
tions, for n≥ 1. This constitutes a drastic improvement of previous results obtained in [4] and,
moreover, is more precise than using the lower bound method from [10] that results only in a
lower bound of Ω(2n/8/

√
3n) many context-free productions.

2. Preliminaries

We assume the reader to be familiar with the basic notions on grammars and languages as
contained in [11]. In particular, a context-free grammar (CFG) is a 4-tuple G = (N,T,P,S),
where N and T are disjoint alphabets of nonterminals and terminals, respectively, S ∈N is the
axiom, and P is a finite set of productions of the form A→ α, where A ∈N and α ∈ (N ∪T )∗.
As usual, the derivation relation of G is denoted by ⇒G, and the reflexive and transitive closure
of ⇒G is written as ⇒∗

G. The language generated by G is defined as

L(G) = {w ∈ T ∗ | S ⇒∗

G w}.
We also consider the following restrictions of context-free grammars: (i) a context-free gram-
mar is said to be linear context-free (LIN) if the productions are of the form A→α, where A∈N
and α ∈ T ∗(N ∪{ε})T ∗—here ε refers to the empty word, and (ii) a context-free grammar is
said to be right-linear or regular (REG) if the productions are of the form A→ α, where A ∈N
and α ∈ T ∗(N ∪{ε}). Moreover, a grammar is said to have weight at most two, if every right-
hand side α of each production A → α in P is of length at most two, that is, |α| ≤ 2. Linear
context-free and regular grammars of weight at most two are abbreviated by SLIN and SREG,
respectively—the prefix S stands for strict—this naming was coined in [4]. Furthermore, Γ will
denote the set of those abbreviations in the sequel, that is, Γ = {SREG,REG,SLIN,LIN,CFG}.

We are interested in the complexity of finite languages w.r.t. different types of grammars. To
be more precise: what is the smallest number of productions of a grammar required to generate
the language L? Let G = (N,T,P,S) be a context-free grammar. We define |G| to be the
number of productions if not stated otherwise, i.e., the number of elements in P . Then the
complexity of a finite language L w.r.t. an X-grammar, for X ∈ Γ, also called the X-complexity

of L, is defined as

Xc(L) = min{|G| |G is an X-grammar and L= L(G)}.
By definition, the following relations hold: CFG≤ LIN≤ REG≤ SREG and moreover we have
CFG ≤ LIN ≤ SLIN ≤ SREG, where X ≤ Y , for X,Y ∈ Γ, if and only if Xc(L) ≤ Yc(L), for
every finite language L. In the case that X ≤ Y , we say that X is more succinct than Y .
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3. Results

In the seminal paper [4] on concise description of finite languages by different types of gram-
mars, certain languages were identified that can only be generated minimally by listing all words
that belong to the language under consideration. For instance, the language

Un = {akbkcaℓbℓdambm | 0 ≤ k+ ℓ+m≤ n}

contains a quadratic number of words and satisfies CFGc(Un) = Ω(n2). The proof of this fact is
based on [4, Lemma 2.1] which states some easy facts about minimal context-free grammars: let
G = (N,T,P,S) be a minimal context-free grammar for the finite language L. Then for every
nonterminal A∈N \{S}, there are words α1 and α2 with α1 6=α2 such that A→α1 and A→α2

are in P . Moreover, for every A ∈ N \ {S}, the set LA(G) = {w ∈ T ∗ | A ⇒∗

G w} contains
at least two words, and there is no derivation of the form A ⇒+

G αAβ with α,β ∈ (N ∪T )∗.
Finally, for every A ∈N \{S}, there are u1,u2, v1, v2 ∈ T ∗ such that u1Au2 6= v1Av2 as well as
S ⇒∗

G u1Au2 and S ⇒∗

G v1Av2. Using these facts we show that the set

Tn = {w$w#w | w ∈ {0,1}n }

of all tripels of length n can be generated minimally by a context-free grammar only by listing
all words. Thus, we have the following result—observe that this result is more precise than
using the lower bound technique from [10] for the language under consideration:

Theorem 3.1 Let X ∈ Γ and n≥ 1. Then Xc(Tn) = Θ(2n).

The language Tn will be a basic building block for our main result, which states that the min-
imal number of context-free productions for a finite language cannot be approximated within a
certain factor unless P= NP. The main result reads as follows:

Theorem 3.2 Let X ∈ Γ. Given an X-grammar generating a finite language, it is impossible

to approximate Xc(L) within a factor of o(nd), for n = max{|w| | w ∈ L} and all d ≥ 1,

unless P= NP.

The proof strategy is by a reduction from the coNP-complete unsatisfiability problem for
3SAT-formulae: given a formula F with m clauses and n variables, where each clause is the
disjunction of at most 3 literals, it is coNP-complete to determine whether F is unsatisfiable—
in other words whether the negation of F is a tautology. Then the core idea is to give a suitable
presentation of non-satisfying assignments of F in {0,1}n for the n variables in form of a
grammar G, such that F is unsatisfiable if and only if L(G) = {0,1}n; by construction there is
a one-to-one correspondence between assignments and words from the set {0,1}n. In order to
finish our reduction we embed G into a grammar that generates the language

LF = L(G) · {0,1,$,#}3c·logn+2 ∪{0,1}n ·Tc·logn,

for some carefully chosen constant c. It is not hard to see that this reduction is polynomial,
even if we force the grammar for LF to be (strict) regular. Then we distinguish two cases: (i)
clearly, if F is unsatisfiable then LF = {0,1}n · {0,1,$,#}3c·logn+2 and there is a CFG-grammar
with a constant number of productions that generates LF . For the other types of X-grammars,
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for X ∈ {REG,SREG,LIN,SLIN}, a linear number of productions suffices, i.e., the number
is O(n). (ii) On the other hand, if F is satisfiable, there is an assignment that evaluates F
to true. Hence, there is a word w ∈ {0,1}n that corresponds to that assignment and is not

a member of L(G). But then the left-quotient of LF w.r.t. the word w, that is, the language
w−1LF = {v ∈ {0,1,$,#}∗ | wv ∈ LF }, is equal to the language of cubes Tc·logn. In order to
estimate the number of productions for the set w−1L, for some word w ∈ T ∗ and a language
L⊆ T ∗, we apply the following lemma.

Lemma 3.3 Let X ∈ Γ and G = (N,T,P,S) be an X-grammar generating a finite language

with n= max{|w| | w ∈ L(G)}. Then one can effectively construct a grammar G′ of the same

type with |G′| ≤ |G|, if X ∈ {REG,SREG}, and |G′| = O(|G| ·n4), if X ∈ {LIN,SLIN,CFG},

satisfying L(G′) = w−1L(G), for every w ∈ T ∗.

Before we continue with the outline of the proof strategy of the main theorem, we briefly
explain the construction of the proof of the lemma. First, we transform the grammar into an
equivalent grammar of the same type and weight at most two. This increases the number of
productions at most by a factor of O(n). Then we apply the triple construction of this grammar
with the partial deterministic finite automaton that accepts wT ∗ in order to accept the intersec-
tion of both languages. Simultaneously during this construction, we take care of the triples that
directly terminate to letters from the word w and replace them by the empty word ε. These
triples can be easily identified, because the partial deterministic finite automaton for wT ∗ is
actually a chain, where the word w is read, followed by the sole accepting state that has a trivial
loop on all letters from T . The tedious details are left to the reader. The triple construction with
the simultaneous modification increases the grammar at most by a factor of O(n3). Overall, this
gives an increase by a factor of O(n4) from the original grammar. This proves the stated result
for SLIN-, LIN-, and CFG-grammars. An alternative proof shows the linear bound for REG- and
SREG-grammars for the quotient w.r.t a single word w.

Now let us come back to the proof outline for the main theorem. Assume that there is
a polynomial time approximation algorithm for the minimal number of productions problem
within o(nd), where n is the length of the longest word in the language under consideration
and d≥ 1. Then this algorithm could be applied to decide whether CFGc(LF ) = O(1). To this
end, set c= d+5. If F is unsatisfiable, then CFGc(LF ) = O(1), as mentioned above. But if F
is satisfiable, let w present a satisfying assignment for F . Then w−1LF = Tc·logn, and by Theo-
rem 3.1, we have CFGc(Tc·n) =Θ(nd+5). By Lemma 3.3 we deduce that CFGc(LF ) =Ω(nd+1)
in this case. Thus, the putative approximation algorithm returns a grammar size of o(nd+1) if
and only if F is unsatisfiable. This solves a coNP-hard problem in deterministic polynomial
time, which implies P = NP. A similar reasoning can be done with the other types of gram-
mars from Γ. The details are left to the reader. This proves Theorem 3.2 and shows that the
X-complexity, for X ∈ Γ, of a given finite language cannot be approximated within a factor
of o(nd), for all d≥ 1, unless P= NP.

References

[1] B. ALSPACH, P. EADES, G. ROSE, A Lower-Bound For the Number of Productions Required For
A Certain Class of Languages. Discrete Appl. Math. 6 (1983), 109–115.



36 Hermann Gruber, Markus Holzer, Simon Wolfsteiner

[2] W. BUCHER, A Note on a Problem in the Theory of Grammatical Complexity. Theoret. Comput.

Sci. 14 (1981) 3, 337–344.

[3] W. BUCHER, H. A. MAURER, K. CULIK II, Context-Free Complexity of Finite Languages. The-

oret. Comput. Sci. 28 (1983) 3, 277–285.

[4] W. BUCHER, H. A. MAURER, K. CULIK II, D. WOTSCHKE, Concise Description of Finite Lan-
guages. Theoret. Comput. Sci. 14 (1981) 3, 227–246.

[5] M. CHARIKAR, E. LEHMAN, D. LIU, R. PANIGRAHY, M. PRABHAKARAN, A. SAHAI, S. SHE-
LAT, The smallest grammar problem. IEEE Trans. Inf. Theory. 51 (2005) 7, 2554–2576.

[6] J. DASSOW, Descriptional Complexity and Operations—Two Non-classical Cases. In:
G. PIGHIZZINI, C. CÂMPEANU (eds.), Proceedings of the 19th Workshop on Descriptional Com-

plexity of Formal Systems. Number 10316 in LNCS, Springer, Milano, Italy, 2017, 33–44.

[7] J. DASSOW, R. HARBICH, Production Complexity of Some Operations on Context-Free Lan-
guages. In: M. KUTRIB, N. MOREIRA, R. REIS (eds.), Proceedings of the 14th Workshop on

Descriptional Complexity of Formal Systems. Number 7386 in LNCS, Springer, Braga, Portugal,
2012, 141–154.

[8] S. EBERHARD, S. HETZL, Compressibility of Finite Languages by Grammars. In: J. SHALLIT,
A. OKHOTIN (eds.), Proceedings of the 17th Workshop on Deescriptional Complexity of Formal

Systems. Number 9118 in LNCS, Springer, Waterloo, Ontario, Canada, 2015, 93–104.

[9] K. ELLUL, B. KRAWETZ, J. SHALLIT, M.-W. WANG, Regular Expressions: New Results and
Open Problems. J. Autom., Lang. Comb. 9 (2004) 2/3, 233–256.

[10] Y. FILMUS, Lower Bounds for Context-Free Grammars. Inform. Process. Lett. 111 (2011) 18,
895–898.

[11] M. A. HARRISON, Introduction to Formal Language Theory. Addison-Wesley, 1978.

[12] S. HETZL, Applying Tree Languages in Proof Theory. In: A. H. DEDIU, C. MARTÍN-VIDE (eds.),
Proceedings of the 6th International Conference Language and Automata Theory and Applications.
Number 7183 in LNCS, Springer, A Coruña, Spain, 2012, 301–312.

[13] M. HOLZER, M. KUTRIB, Descriptional Complexity—An Introductory Survey. In: C. MARTÍN-
VIDE (ed.), Scientific Applications of Language Methods. World Scientific, 2010, 1–58.

[14] A. R. MEYER, M. J. FISCHER, Economy of description by automata, grammars, and formal sys-
tems. In: Proceedings of the 12th Annual Symposium on Switching and Automata Theory. IEEE
Computer Society Press, 1971, 188–191.

[15] Z. TUZA, On the Context-Free Production Complexity of Finite Languages. Discrete Appl. Math.

18 (1987) 3, 293–304.


	Concise Description of Finite Languages, Revisited

