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In computer science in general, and also in the particular field of descriptional complexity, we

try to classify problems and mechanisms according to different aspects of their tractability. Often

the first distinction we make in such a classification is to check whether a problem admits an

effective solution at all. If so, we usually take a closer look and analyze the inherent complexity

of the problem. But undecidable problems can also be compared to each other, using the toolkit

provided by computability theory. Here, it turns out that most naturally occurring problems are

complete at some level of the arithmetic (or analytic) hierarchy. This has been a rather successful

approach to understand the nature of many undecidable problems we encounter in various com-

putational settings. As for decision problems, there are conversion problems between different

models that cannot be solved effectively. Indeed, they evade solvability a forteriori because the

size blow-up caused by such a conversion cannot be bounded above by any recursive function.

This phenomenon, nowadays known as non-recursive trade-off, was first observed by Meyer and

Fischer [12] between nondeterministic pushdown automata and finite automata. Previously, it

had been known that every deterministic pushdown automaton accepting a regular language can

be converted into an equivalent finite automaton of at most triply-exponential size. In contrast,

Meyer and Fischer showed that if we replace “deterministic pushdown automaton” with “nonde-

terministic pushdown automaton,” then the maximum size blow-up can no longer be bounded by

any recursive function. Since that time there has been a steadily growing list of results where this

phenomenon has been observed, e.g., [1, 3, 4, 5, 6, 7, 8, 10, 11, 14, 15, 16]. In [9] a survey is given

that also presents a few general proof techniques for proving such results. While it seems to be clear

that non-recursive trade-offs usually sprout at the wayside of the crossroads of (un)decidability,

in many cases proving such trade-offs apparently requires ingenuity and careful automata con-

structions. While apparently we cannot get rid of this altogether, here we identify general criteria

where non-recursive trade-offs can be directly read off, provided certain basic (un)decidability

results about the descriptional systems under consideration are known. The present work aims at

making the first steps in paralleling the successful development of the abstract theory of languages,

and in building a theory with unified proofs of many non-recursive trade-off results appearing in

the literature. We can show the following two results, which allows us to deduce that certain
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trade-offs between descriptional systems1 are non-recursive2 in a very easy way.

Theorem 1 Let S1 and S2 be two descriptional systems that are effective full trios. If the in-

finiteness problem for S1 is not semi-decidable and the infiniteness problem for S2 is decidable,

then the trade-off between S1 and S2 is non-recursive.

Here a descriptional system is called an effective trio, if it is effectively closed under λ-free

morphism, inverse morphism and intersection with regular languages. If it is also effectively

closed under general morphism, we speak of an effective full trio.

Theorem 2 Let S1 and S2 be two descriptional systems that are effective trios. If S1 has a

decidable word problem but an undecidable emptiness problem, and S2 has a decidable emptiness

problem, then the trade-off between S1 and S2 is non-recursive.

Besides new proof techniques in this domain, the present work also aims to provide a finer

classification of such non-recursive trade-offs, in a similar vein to what has been done in the

classification of undecidable problems. We prove bounds on the trade-off function f that serves

as a least upper bound for the increase in complexity when changing from a descriptor in S1 to an

equivalent descriptor in S2. Here, it turns out that the complexity3 of the problem of the S2-ness

of S1 descriptors influences the growth rate of f .

Theorem 3 Let S1 and S2 be two descriptional systems. The problem of determining for a

given descriptor D1 ∈ S1 whether the language L(D1) belongs to L (S2), i.e., the S2-ness of S1

1A descriptional system S is a recursive set of non-empty finite descriptors, such that each descriptor D ∈ S
describes a formal language L(D), and if L(D) is recursive (recursively enumerable), then there exists an effective
procedure to convert D into a Turing machine that decides (semi-decides) L(D). We always assume that a de-
scriptional system is associated with a reasonable size measure. Here a complexity (size) measure for S is a total,
recursive function c : S → N such that for any alphabet A, the set of descriptors in S describing languages over A

is recursively enumerable in order of increasing size, and does not contain infinitely many descriptors of the same
size.

2Let S1 be a descriptional systems with complexity measure c1, and S2 be descriptional systems with complexity
measure c2. A total function f : N → N, with f(n) ≥ n, is said to be an upper bound for the increase in complexity
when changing from a descriptor in S1 to an equivalent descriptor in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2)
there exists a D2 ∈ S2(L(D1)) such that c2(D2) ≤ f(c1(D1)). If there is no recursive upper bound, the trade-off
is said to be non-recursive.

3In particular we consider the arithmetic hierarchy [13], which is defined as follows:

Σ1 = {L | L is recursively enumerable },

Σn+1 = {L | L is recursively enumerable in some A ∈ Σn },

for n ≥ 1. Here, a language L is said to be recursively enumerable in some B if there is a Turing machine with
oracle B that semi-decides L. Let Πn be the complement of Σn, i.e., Πn = {L | L is in Σn }. Moreover, let
∆n = Σn ∩Πn, for n ≥ 1. Observe that ∆1 = Σ1 ∩Π1 is the class of all recursive sets. Completeness and hardness
are always meant with respect to many-one reducibilities ≤m, if not otherwise stated. Let K denote the halting
set, i.e., the set of all encodings of Turing machines that accept their own encoding. For any set A define A′ = KA

to be the jump or completion of A, where KA is the A-relativized halting set, which is the set of all encodings of
Turing machines with oracle A that accept their own encoding, and define A(0) = A and A(n+1) = (A(n))′, for
n ≥ 0. Furthermore we use ≤T to refer to Turing reducibility.
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descriptors, can be solved in Σ2, if both S1 and S2 are recursive. In case at least one descriptional

system is not recursive (but recursively enumerable) the problem can be solved in Σ3.

This theorem can be utilized to prove an upper bound when changing from one system to

another one.

Theorem 4 Let S1 and S2 be two descriptional systems. If both S1 and S2 are recursive, then

there is a total function f : N → N that serves as an upper bound for the increase in complexity

when changing from a descriptor in S1 to an equivalent descriptor in S2, satisfying f ≤T ∅′′. In

case at least one descriptional system is not recursive (but recursively enumerable) the function f :

N → N can be chosen to satisfy f ≤T ∅′′′.

What about lower bounds on the trade-off function f? In fact, we show that there is a relation

between the function f and the equivalence problem between S1 and S2 descriptors, in the sense

that, whenever the former problem becomes easy, the latter is easy too.

Theorem 5 Let S1 and S2 be two descriptional systems and f : N → N a total function that

serves as an upper bound for the increase in complexity when changing from a descriptor in S1

to an equivalent descriptor in S2. Then we have: If both descriptional systems are recursive and

f ≤T ∅′, then the S2-ness of S1 descriptors is recursive in ∅′. If at least one descriptional system

is not recursive (but recursively enumerable) and f ≤T ∅′′, then the S2-ness of S1 descriptors is

recursive in ∅′′.

Thus, we can show that only two types of non-recursive trade-offs within the recursively enu-

merable languages exist! First consider the context-free grammars and the right-linear context-free

grammars (or equivalently finite automata) as descriptional systems. Thus, we want to consider

the trade-off between context-free languages and regular languages. In [12] it was shown that this

trade-off is non-recursive. By Theorem 4, one can choose the upper bound function f such that

f ≤T ∅′′. On the other hand, if f ≤T ∅′, then by Theorem 5 we deduce that checking regularity

for context-free grammars is recursive in ∅′ and hence belongs to ∆2. This is a contradiction,

because in [2] this problem is classified to be Σ2-complete. So, we obtain a non-recursive trade-off

somewhere in between ∅′′ and ∅′, that is, f ≤T ∅′′ but f 6≤T ∅′.
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