
Simplifying Regular Expressions. A Quantitative Perspective

Hermann Gruber

Institut für Informatik, Universität Gießen
Arndtstraße 2, D-35392 Gießen, Germany

E-Mail: hermann.gruber@informatik.uni-giessen.de

Stefan Gulan

Fachbereich IV—Informatik, Universität Trier
Campus II, D-54296 Trier, Germany

E-Mail: gulan@uni-trier.de

We propose a new normal form for regular expressions which tightly bounds the ratio of two

common size measures for regular expressions. We also give a conversion from regular expressions

to ε-NFAs, which implicitly computes this normal form while maintaining an optimal ratio of

expression-to-automaton-sizes. This allows us to resolve a problem posed by Ilie and Yu [4].

1 Definitions and Constructions

Regular expressions, expressions for brevity, may not contain ε or ∅ and are otherwise defined as

usual with the additional operator ?, where L(r?) = {ε} ∪ L(r). If every subexpression s? of r

satisfies ε /∈ L(s), we call r mildly simplified. The number of leaves in the parse of r is denoted

alph(r), the number of nodes arpn(r); further, let rpn(r) equal arpn(r) plus the number ?s occuring

in r. Let alph(L) = min{alph(r) | L(r) = L}; rpn(L) and arpn(L) are defined accordingly.

The operators ◦ and • are defined as: a◦ = a, (r+s)◦ = r◦+s◦, r?◦ = r◦, r∗◦ = r◦∗, if ε /∈ L(rs)

then (rs)◦ = rs, else (rs)◦ = r◦ + s◦; a• = a, (r + s)• = r• + s•, (rs)• = r•s•, r∗• = r•◦∗, if

ε ∈ L(r) then r?• = r•, else r?• = r•?. We call r• the strong star normal form of r (cf. [1]).

We construct εNFAs from expressions by graph rewritings (Figs. 1,2), taken from [3], with

additional precedences. Let A(r) denote any automaton constructed this way, its size |A(r)| is the

combined number of states and transitions.

r s r*
=>

r
rs

=>
r+s

=>
s

r

Figure 1: Introducing states/transitions while deconstructing the input in labels.

H. Gruber and S. Gulan

r2

rn rn

r2

=>
r1

r2

r3

r1
r2

r3

=> =>

Figure 2: Removing redundant ε-transitions (unlabeled arcs) and incident states.

2 Results

Theorem 2.1. Any regular language L satisfies rpn(L) ≤ 4 alph(L) − 1.

This improves on previous bounds ([2, 4]) of rpn(L) wrt. alph(L). The concept of strong star

normal form is crucial in the proof. This normal form is implicitly computed upon converting a

mildly simplified expression into an εNFA.

Theorem 2.2. Let r be mildly simplified, then A(r) = A(r•).

The precondition poses no severe restriction, since any r can be transformed in linear time into

a mildly simplified r′, s.t. L(r) = L(r′) and |A(r′)| ≤ |A(r)|. The size of an εNFA constructed

from such an expression is bounded from above as follows

Theorem 2.3. Let r be mildly simplified, then |A(r)| ≤ 4 2

5
alph(r) + 1. This bound is tight for

an infinite family of regular languages.

Finally, we show that for some regular languages, the number of operators makes up for two

thirds of even the shortest equivalent expression’s size.

Theorem 2.4. There are regular languages Li such that alph(Li) ≤ n and arpn(Li) ≥ 3n − 1.

References

[1] A. Brüggemann-Klein. Regular Expressions into Finite Automata. Theoretical Computer

Science, 120(2):197–213, 1993.

[2] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and open

problems. Journal of Automata, Languages and Combinatorics, 10(4):407–437, 2005.

[3] S. Gulan and H. Fernau. An Optimal Construction of Finite Automata from Regular Expres-

sions. In: FSTTCS 08, pp. 211–222, Dagstuhl Seminar Proceedings 08004, 2008.

[4] L. Ilie and S. Yu. Follow automata. Information and Computation 186(1):140–162, 2003.

