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1 Introduction

We consider the problem of converting a deterministic finite automaton
(DFA) into a short regular expression (RE). Examples given by Ehrenfeucht
and Zeiger in the 1970s show that the required expression size in the worst
case is 2Θ(n) for infinite languages, and for finite languages in nΩ(log log n) and
nO(log n), if the alphabet size is allowed to grow with the number of states
n of the given automaton [2]. We develop a new lower bound method for
regular expression size, based on communication complexity, to show that
in the second case, the required size is indeed nΘ(log n), thus solving an old
open problem stated in that work. Overmore, our witness languages are
over a binary alphabet. For the case of infinite languages, exponential lower
bounds for small alphabets have been obtained only very recently in [4, 6].

This is an abstract of the conference version [9], in which more details
can be found.

∗Most of the work was done while the first author was at Institut für Informatik,

Ludwig-Maximilians-Universität München.
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2 Preliminaries

We assume the reader to be familiar with the basic notions in formal lan-
guage and automata theory as contained in [10]. In addition, we need the
following notions: The alphabetic width (or size) of a regular expression E

is defined as the total number of occurrences of symbols in Σ in E, and is
denoted by alph(E). In a similar way, for a regular language L we define
alph(L) as the minimum alphabetic width among all regular expressions de-
scribing L. We call a finite language L homogeneous if all words in L have
the same length.

We will also need some notions from communication complexity theory.
For a thorough treatment of that topic, the reader might want to consult [11].
Let X, Y, Z be finite sets and R ⊆ X ×Y ×Z a ternary relation on them. In
the search problem R, we have Alice given some input x ∈ X, Bob is given
some input y ∈ Y . Initially, no party knows the other’s input, and Alice
and Bob both want to output some z such that (x, y, z) by communicating
as few bits as possible. A communication protocol is a binary tree with
each internal node v labeled either by a function av : X → {0, 1} if Alice
transmits at this node, or bv : Y → {0, 1} if Bob transmits at this node.
Each leaf is labeled by an output z ∈ Z. We say that a protocol solves
the search problem for relation R if for every input pair (x, y) ∈ X × Y ,
walking down the tree according to the functions av and bv leads to a leaf
labeled with some admissible z, which satisfies (x, y, z) ∈ R. The protocol

partition number CP (R) denotes the minimum number of leaves among all
protocols solving the search problem for R. For using this notion in formal
language theory, let Σ = a1, . . . , ak be an ordered alphabet. The order on
Σ is extended componentwise to a partial order on Σn. A homogeneous
language L ⊆ Σn is called monotonic, if

v ∈ L and w ≥ v implies w ∈ L .

For a homogeneous language ∅ ⊂ L ⊂ Σn, the search problem RL ⊆ L ×
(Σn \L)× [n] is defined by (v, w, i) ∈ RL iff vi 6= wi. If L is monotonic, then
additionally the monotonic search problem Rm

L is defined by (v, w, i) ∈ Rm
L

iff vi > wi.
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3 A new Lower Bound Technique for Regular Ex-

pression Size

We outline next how techniques from communication complexity can be used
for proving lower bounds on the size of regular expressions for homogeneous
languages.

Lemma 3.1 For every homogeneous language L with ∅ ⊂ L ⊂ Σn, alph(L) ≥
CP (RL). Moreover, if L is monotonic, then alph(L) ≥ CP (Rm

L ).

The first part of the lemma was proved for the special case of the parity
function in [1]—in terms of Boolean formula size instead of CP (RL), but
this is equivalent to the setup used here, see [11, Chapter 5]. We note that
only the second part allows us to prove a superpolynomial lower bound on
the conversion problem. To establish this bound, for a given pair of integers
(ℓ, n), we define a family of graphs Gℓ,n as the set of directed graphs whose
vertex set V is organized in ℓ + 2 layers, with n vertices in each each layer.
Hence we assume V = { 〈i, j〉 | 1 ≤ i ≤ n, 0 ≤ j ≤ ℓ + 1}. For all graphs in
Gℓ,n, we require in addition that each edge connects a vertex in some layer
i to a vertex in the adjacent layer i + 1. The following definition serves to
represent subsets of Gℓ,n as homogeneous languages over the alphabet {0, 1}:
Fix a graph G ∈ Gℓ,n for the moment. Let e(i, j, k) = 1 if G has an edge from
vertex i in layer j to vertex k in layer j + 1, and let e(i, j, k) = 0 otherwise.
Next, for vertex i in layer j, the word f(i, j) = e(i, j, 1)e(i, j, 2) · · · e(i, j, n)
encodes the set of outgoing edges for this vertex. Then for layer j, the word
g(j) = f(1, j)f(2, j) · · · f(n, j) encodes the set of edges connecting vertices
in layer j to vertices in layer j + 1, for 0 ≤ j ≤ ℓ. Finally, the graph
G is encoded by the word w(G) = g(0)g(1) · · · g(ℓ). It is easy to see that
each word in the set {0, 1}n2(ℓ+1) can be uniquely decoded as a graph in
the set Gℓ,n. Without risk of confusion, we will henceforth not distinguish
between graphs and their encodings, and between sets of graphs and the
corresponding languages. A graph G ∈ Gℓ,n belongs to the subfamily forkℓ,n,
if there exists a simple path starting in 〈1, 1〉 ending eventually in a fork,
that is, a node with outdegree at least two. We prove that the language
forkℓ,n admits a small DFA but needs a large RE. More precisely, we show
that Lk = forkℓ,n, for some ℓ ∈ Θ(n3), can be accepted by a DFA with at
most k = n6 states, but a large lower bound on the minimum expression size
is obtained from using Lemma 3.1 by a reduction—in the communication
complexity sense— from the FORK relation defined in [5].

Theorem 3.2 There exist an infinite family of finite languages Lk over a
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binary alphabet such that Lk is acceptable by a DFA with at most k states,

but every equivalent regular expression has alphabetic width at least

k(1/144−o(1)) log k.

4 Conclusions and Further Research

In this work, we established an asymptotically tight lower bound for the
problem of converting a finite automaton accepting a finite language over
binary alphabet into a regular expression. As mentioned in the introduc-
tion, the case of infinite languages was also settled recently in [4, 6]. These
and follow-up works [3, 7, 8] also study the effect of common language op-
erations, such as intersection or complement, on regular expression size. A
topic for further research would be a corresponding study for the case of
finite languages, thus paralleling the developments in state complexity (see
e.g. [12]).
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