
FINDING UPPER BOUNDS FOR NONDETERMINISTIC STATE

COMPLEXITY IS HARD

Hermann Gruber and Markus Holzer

Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany

e-mail: {gruberh,holzer}@in.tum.de

ABSTRACT

Finite automata are one of the oldest and most intensely investigated computational models.
Historically, the theory of finite automata counts among the oldest topics in computer science,
and is one of the basic building blocks of the theory of formal languages. Its origins can be
tracked back to the 1940’s, when finite automata were used to model nerve nets [6]. Since
its original discovery, finite automata have found applications both as a computing model and
data structure in many application domains. Today, one of the most prominent applications of
finite automata is text processing, e.g., in construction of compilers for programming languages.
The power and usability of text processing tools based on regular languages like “sed” and
“grep” for UNIX operating systems inspired the advent of the programming language “perl”
with built-in capabilities for regular languages. This again prompted the decision-makers of
today’s leading programming platforms to build in support for regular languages. But finite
automata are also found widespread use in many other different areas such as circuit design,
natural language processing, computational biology, parallel processing, image compression, to
mention a few [1, 7, 8, 9].

As some of these applications deal with huge masses of data, the amount of space needed
by finite automata is an important research topic. On the one hand, it is well known that
while nondeterministic finite automata and deterministic finite automata are equal in expres-
sive power, nondeterministic automata can be exponentially more succinct than deterministic
ones. On the other hand, minimizing deterministic finite automata can be carried out effi-
ciently, whereas the state minimization problem for nondeterministic finite state machines is
PSPACE-complete, even if the regular language is specified as a deterministic finite automa-
ton [5]. This prompted the authors of the aforementioned paper to ask whether there exist
at least polynomial-time approximation algorithms with a reasonable performance guarantee.

However, recent work [2] shows that this problem cannot be approximated within
√

n

polylog n for
state minimization and n

polylog n for transition minimization, provided some cryptographic as-
sumption holds, namely that nonuniform logspace contains strong pseudo-random functions. As
this is not a usual assumption under which inapproximability results are proved, the authors
note the task of proving approximation hardness results under the weaker (and more familiar)
assumption P 6= NP as an open problem.

In this paper we solve this open problem. At first glance we show that minimizing nondeter-
ministic finite automata, when given a deterministic finite state machine, is not approximable
within n1−ε, for all ε > 0, for an input alphabet of size O(n), unless P = NP. The proof is based
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on a reduction from the biclique edge cover problem. This problem turns out to be central to
our studies. Note, that recently this problem was also used in [3] to obtain lower bounds on the
nondeterministic state complexity of finite automata. With a more sophisticated construction
we can overcome the problem of the growing alphabet size. In this way, we prove that minimiza-
tion of nondeterministic finite automata w.r.t. the number of states with binary input alphabet
is not approximable within n

1

2
−ε, for all ε > 0, unless P = NP. When considering the number

of transitions instead of the number of states, the non-approximation factor changes from n
1

2
−ε

to n
1

3
−ε. Observe, that the ratio we established for transition minimization is much lower com-

pared to state minimization. This may be due to the fact that we used a reduction from the
biclique edge cover problem on graphs, which incorporates much of our structural knowledge
about nondeterministic state complexity [3, 4], but we know much less about nondeterministic
transition complexity.

The noted inapproximability results naturally carry over to the setup, when specifying the
input by a truth table. The approximation complexity when specifying a regular language by
a truth table was stated as an open question in [2]. We show that the decision version of
the problem is NP-complete, and that there is a polytime algorithm with performance ratio

comparable to the lower bounds, approximating the problem within a factor of O

(

√

N log log N

(log N)4/3

)

in the case of state minimization, and O

(

N log log N

(log N)2

)

in the case of transition minimization,

where N denotes the size of the truth table. From the inapproximability point of view we prove
that any efficient approximation algorithm will have an approximation factor of at least N

1

4
−ε,

for all ε > 0, unless P = NP. Again, most of the proofs rely on the biclique edge cover problem.
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