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1. Introduction

If one tries to describe formal objects such as, e.g., Boolean functions,
graphs, trees, languages, as compact as possible we are faced with the ques-
tion, which representation to use. This quest for compact representations
of formal objects dates back to the early beginnings of theoretical computer
science. For instance, one can prove by a simple counting argument that
most Boolean functions have exponential circuit complexity [1]. For other
representations of Boolean functions than circuits, such as formulas, ordered
binary decision diagrams, etc. a similar result applies. This incompressibility
is inherent in almost all possible representations of formal objects.

When considering formal languages, automata are the preferred choice
of representation. In particular, for regular languages and subfamilies one
may use deterministic (DFAs) or nondeterministic finite automata (NFAs) or
variants thereof to describe these languages. It is well known that these two
formalisms are equivalent. The obvious way to obtain a DFA from a given
NFA is by applying the subset or power-set construction [2]. This construc-
tion allows to show an upper bound of 2n states in the DFA obtained from
an n-state NFA, and this bound is known to be tight. For finite languages a
slightly smaller bound on the determinization problem is given in [3]. Here

the tight bound depends on the alphabet size k and reads as Θ(k
n

1+log2 k ).
Thus, for a two-letter input alphabet Θ(2

n
2 ) states are sufficient and neces-

sary in the worst case for a DFA to accept a language specified by an n-state
NFA. There are a lot of other results known for finite automata accepting
finite languages such as, e.g., the maximal number of states of the minimal
DFA accepting a subset of Σ` or Σ≤` [4, 5], or the average case size of DFAs
and NFAs w.r.t. the number of states and transitions accepting a subset of Σ`

or Σ≤` [6].
Since regular languages and finite automata are widely used in applica-

tions, and most of them use actually finite languages only, it is worth consid-
ering further representations for finite languages that may be more compact,
but still bare nice handling in applications. Such a representation is based
on finite automata and is known as finite cover automata. The idea is quite
simple, namely a finite cover automaton A of a finite language L ⊆ Σ∗ is a fi-
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nite automaton that accepts all words in L and possibly other words that are
longer than any word in L. Formally, this reads as L = L(A)∩Σ≤`, where `
is the length of the longest word(s) in L; then we say that A covers the finite
language L. Originally deterministic finite cover automata (DFCAs) were
introduced in [7], where an efficient minimization algorithm for these devices
was given. Further results on important aspects of DFCAs can be found in,
e.g., [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Recently, DFCAs were generalized
to nondeterministic finite cover automata (NFCAs) in [18] and it was shown
that they can even give a more compact representation of finite languages
than both NFAs and DFCAs. To our knowledge this was the first systematic
study on this subject, although it has been suggested already earlier in a
survey paper on cover automata [19].

We further develop the theory of finite cover automata in this paper.
At first we introduce the necessary definitions in the next section. Then
we briefly recall what is known on lower bound techniques for both types
of finite cover automata. In particular, we first reconsider the fooling set
techniques known for nondeterministic finite automata (NFAs) and secondly
we show how to alter the biclique edge cover technique from [20] to make it
applicable for NFCAs, too. This positively answers a question stated in [18],
whether the biclique edge cover technique can be used at all to prove lower
bounds for NFCAs. As a byproduct we develop a lower bound method for
E-equivalent NFAs. This concept was recently introduced in [21]. Two lan-
guages are E-equivalent if their symmetric difference lies in the so called error
language E. Thus, E-equivalence is a generalization of ordinary equivalence
and also of cover-automata. In particular, setting E = Σ>`, thus not taking
care of words that are too long, we are back to covering languages and cover
automata. Section 4 is devoted to conversions between finite automata and
finite cover automata. First we provide a large family of languages where
cover state complexity meets ordinary state complexity (up to one state for
deterministic devices). Hence, for the conversions from finite automata to
finite cover automata not much state savings are possible. For the opposite
direction we show that an n-state finite cover automaton for a language of
order ` can be converted to an equivalent finite automaton with about n · `
states; the exact bounds are shown to be tight for all n and `. In particu-
lar, this shows that roughly speaking the number of states of a finite cover
automaton is at least an `th fraction of the state size of the equivalent finite
automaton. Then we take a closer look on determinizing NFCAs by the well
known power-set construction. We show that here the state blow-up heavily

3



depends on the order ` of the finite language represented by the NFCA. When
the order is large enough, we get a tight exponential blow-up of 2n, just as in
the case of ordinary finite automata. We give a range of conditions that im-
ply sub-exponential, polynomial, and even linear determinization blow-ups.
These results are presented in Section 5. In the penultimate section, we per-
form average case comparisons of the descriptional complexity of finite cover
automata. For ordinary finite automata this was already done in, e.g., [6],
where it was shown that almost all DFAs accepting finite languages of order `
over a binary input alphabet have state complexity Θ(2`/`), while NFAs are
shown to perform better, namely the nondeterministic state complexity is in
Θ(
√

2`). Interestingly, in both cases the aforementioned bounds are asymp-
totically like in the worst case. For finite cover automata exactly the same
picture as for ordinary finite automata emerges. Finally, we summarize our
results in the conclusions section and state some open problems for future
research.

2. Preliminaries

We recall some definitions on finite automata as contained in [22]. A
nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ),
where Q is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q
is the initial state, F ⊆ Q is the set of accepting states, and δ : Q× Σ→ 2Q

is the transition function. The language accepted by the NFA A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ },

where the transition function is recursively extended to δ : Q × Σ∗ → 2Q.
An NFA is deterministic (DFA), if and only if |δ(q, a)| = 1, for every q ∈ Q
and a ∈ Σ. In this case we simply write δ(q, a) = p instead of δ(q, a) = {p},
assuming that the transition function δ : Q×Σ→ Q is a total mapping. Two
automata A and B are equivalent if they accept the same language, that is,
L(A) = L(B). An NFA (DFA, respectively) A is minimal if any equivalent
NFA (DFA, respectively) needs at least as many states as A. It is a well
known fact that minimal DFAs are unique up to isomorphism, while minimal
NFAs are not necessarily unique in general. Let nsc(L) (sc(L), respectively)
refer to the number of states a minimal NFA (DFA, respectively) needs to
accept the language L. By definition and the seminal result in [2] we have
nsc(L) ≤ sc(L) ≤ 2nsc(L), if L is a language accepted by a finite automaton.
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Proving lower bounds for nsc(L) can be done by applying, e.g., the extended
fooling set technique, which reads as follows [23]:

Theorem 1. Let L ⊆ Σ∗ be a regular language and suppose there exists a
set of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that

1. xiyi ∈ L, for 1 ≤ i ≤ n, and

2. i 6= j implies xiyj 6∈ L or xjyi 6∈ L, for 1 ≤ i, j ≤ n.

Then any nondeterministic finite automaton for L has at least n states, i.e.,
n ≤ nsc(L). Here S is called an extended fooling set for L.

A non-empty finite language L ⊆ Σ∗ is said to be of order `, if ` is the
length of the longest word(s) in the set L, i.e., L ⊆ Σ≤`, where Σ≤` refers to
the set {w ∈ Σ∗ | |w| ≤ ` }, where |w| denotes the length of the word w. In
particular, the length of the empty word λ is zero.

A deterministic finite cover automaton (DFCA) for a language L ⊆ Σ∗

of order ` is a DFA A such that L(A) ∩ Σ≤` = L; these devices were in-
troduced in [7]. This definition naturally carries over to NFAs, hence lead-
ing to nondeterministic finite cover automata (NFCA), which were recently
introduced in [18]. Two cover automata A and B are equivalent if they
cover the same finite language L ⊆ Σ∗, that is, L(A) ∩ Σ≤` = L(B) ∩ Σ≤`,
where ` is the order of L. A DFCA (NFCA, respectively) A for a finite
language L is minimal if any equivalent automaton of same type needs at
least as many states as A. Let ncsc(L) (csc(L), respectively) refer to the
number of states a minimal NFCA (DFCA, respectively) needs to accept the
finite language L. By definition we have ncsc(L) ≤ csc(L), if L is a finite
language. Moreover, since any cover automaton can be at most as large as
an ordinary finite automaton of the same type for a finite language L, we
have csc(L) ≤ sc(L) as well as ncsc(L) ≤ nsc(L). A useful tool for the study
of minimal DFCAs is the notion the similarity relation, which plays a similar
role as the Myhill-Nerode relation1 in case of DFAs. For a finite language
L ⊆ Σ∗ of order ` the similarity relation ≈L on words is defined as follows:
for u, v ∈ Σ∗ let u ≈L v if and only if we have uw ∈ L ⇐⇒ vw ∈ L,
for all w ∈ Σ∗, whenever |uw| ≤ ` and |vw| ≤ `. Observe, that ≈L is not
a equivalence relation in general. The relation ≈L can also be defined for

1For a language L ⊆ Σ∗ define the Myhill-Nerode relation ≡L on words as follows: for
u, v ∈ Σ∗ let u ≡L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ Σ∗.
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states of a DFCA A = (Q,Σ, δ, q0, F ). Two states p and q are similar, de-
noted by p ≈L q, if δ(p, w) ∈ F ⇐⇒ δ(q, w) ∈ F holds for all w ∈ Σ≤`−m,
with m = max(levA(p), levA(q))—here levA(p) = min{ |u| | δ(q0, u) = p }. If
p 6≈L q then p and q are dissimilar. It is known [7] that a DFCA is minimal
if all its states are pairwise dissimilar.

3. Lower Bound Techniques For Cover Automata

It is well known that the minimal DFA for a language L is isomorphic to
the DFA induced by the Myhill-Nerode equivalence relation for L. Hence, the
number of states of the minimal DFA accepting the language L ⊆ Σ∗ equals
the index, i.e., the cardinality of the set of equivalence classes of the Myhill-
Nerode equivalence relation. On the other hand, the problem to estimate
the necessary number of states of a minimal NFA accepting a given regular
language is complicated, and stated as open in [24] and [25]. Several authors
have introduced methods for proving lower bounds, using communication
complexity methods for proving such lower bounds, see, for example, [23,
26, 27]. The results of [27] have been generalized by the advent of so-called
multi-party nondeterministic message complexity [28]. The most widely used
lower bound techniques for NFAs are the so-called fooling set techniques—
the fooling set technique [26] and the extended fooling set method [23]—and
the biclique edge cover technique [20].

A similar situation applies for finite cover automata. Although DFCA are
not unique in general, it was shown in [7] that one can still estimate the exact
number of states of a minimal DFCA by determining the size of the canonical
maximal dissimilar sequence for the finite language L, which is based on the
similarity relation for L. Recently, in [18] both fooling set methods were
adapted to work for NFCAs as well. In fact, it was shown that the fooling
set lower bound techniques for state complexity of NFAs mentioned above,
can be modified to prove lower bounds for minimal NFCAs when the order
of the language is explicitly considered in the lower bound statement. Here
we first reconsider the fooling set techniques and then show how to modify
yet another lower bound method, the biclique edge cover technique of [20],
to work with NFCAs. Whether this latter technique can be generalized to
NFCAs was stated as an open problem in [18].

In [18] it was argued that there is no doubt that any fooling set type
technique used to prove a lower bound for NFCAs must explicitly consider
the order of the language under consideration. In this vein, both fooling
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set techniques were adapted. In fact, we show that the original fooling set
technique of [26] (not the extended version of [23]) already gives a lower
bound for NFCAs without modifying the technique to explicitly deal with
the order of the language under consideration.

Theorem 2. Let L ⊆ Σ∗ be a finite language and suppose there exists a set
of pairs S = { (xi, yi) | 1 ≤ i ≤ n } such that

1. xiyi ∈ L, for 1 ≤ i ≤ n, and

2. xiyj 6∈ L, for 1 ≤ i, j ≤ n, and i 6= j.

Then any nondeterministic finite cover automaton for L has at least n states,
i.e., n ≤ ncsc(L). Here S is called a fooling set for L.

Proof. Let A = (Q,Σ, δ, q0, F ) be any NFCA covering the finite language L
of order `. Since xiyi ∈ L, there is a state qi in Q such that qi ∈ δ(q0, xi)
and δ(qi, yi) ∩ F 6= ∅. Assume that a fixed choice of qi has been made for
any i with 1 ≤ i ≤ n. We prove that qi 6= qj for i 6= j. For the sake of a
contradiction assume that qi = qj for some i 6= j. We consider two cases: (i)
At least one of |xi|+|yj| and |xj|+|yi| is at most `. Without loss of generality
we assume that |xi| + |yj| ≤ `. Then clearly the automaton A accepts the
word xiyj, which has length at most `, but is not in L, contradicting the
assumption that A covers L. (ii) Both of |xi| + |yj| and |xj| + |yi| exceed `.
We show that this case cannot apply. Since the words xiyi and xjyj belong
to L, we have |xiyi| ≤ ` and |xjyj| ≤ `, and therefore |xiyixjyj| ≤ 2`. Now if
both |xiyj| > ` and |xjyi| > `, then we get |xiyixjyj| > 2`, a contradiction.�

In contrast the more powerful extended fooling set technique presented
in [23] does not work as a lower bound technique for NFCAs as the following
example illustrates, and therefore the modification of this technique presented
in [18] is the right generalization.

Example 1. Consider the unary finite language L = {a}≤`, for ` ≥ 1.
Clearly, this language can be covered by an NFCA with a single state. How-
ever, the set S = { (ai, a`−i) | 0 ≤ i ≤ ` } is an extended fooling set for L,
proving a lower bound of `+1 on the nondeterministic state complexity of L.
�

In the remainder of this subsection we turn our attention to the biclique
edge cover technique from [20].
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A central role in this technique plays the notion of the bipartite dimen-
sion dim(G) of a bipartite graph G, which is the minimum number of bi-
cliques in G needed to cover all edges of G. For a trivial upper bound,
observe that each bipartite graph G = (X, Y,E) can be covered by stars2,
so d(G) ≤ min (|X|, |Y |). But note that each edge may be covered by one
or more bicliques according to the definition of bipartite dimension. A non-
trivial example is the crown graph K−n,n, which is obtained from a complete
bipartite graph Kn,n by removing a perfect matching. Using a computer
program, one can find that d(K−5,5) = 4. The bipartite dimension d(K−n,n)
in general was determined in [29, Corollaries 1,2] to be equal to σ(n), where

σ(n) = min
{
k | n ≤

(
k
bk/2c

)}
. Computing the bipartite dimension of a bi-

partite graph is an NP-complete problem [30].
Now the biclique edge cover technique asserts that for a regular lan-

guage L, the bipartite dimension of the graph G = (X, Y,E) with X = Y = L
and E = { (x, y) ∈ X × Y | xy ∈ L } is a lower bound for the number of
states of every NFA accepting L; see [20] for a proof.

The following example shows that the biclique edge cover technique can-
not be applied to NFCAs without modification.

Example 2. Let ` ≥ 1 and consider the finite language L = {a}≤`. Clearly
the single-state DFA accepting for the language {a}∗ is a cover automaton
for L, hence we have ncsc(L) = 1. However, the bipartite dimension of the
graph G = (X, Y,E), with X = Y = L and E = { (x, y) ∈ X × Y | xy ∈ L },
is `+ 1 > 1. This can be seen as follows. Notice that (ai, aj) ∈ E if and only
if i+ j ≤ `. In particular, for 0 ≤ i ≤ `, the edge ei = (ai, a`−i) belongs to E.
Therefore, every such ei has to be covered by some biclique Hi = (Xi, Yi, Ei)
with ai ∈ Xi, a

`−i ∈ Yi, and Ei = Xi × Yi. Now we see that distinct edges ei
and ej must be covered by distinct bicliques, that is, Hi 6= Hj, for 1 ≤ i, j ≤ `,
with i 6= j: if Hi = Hj then we have ai, aj ∈ Xi and a`−i, a`−j ∈ Yi, and
since Hi is a biclique, its set of edges Ei contains both (ai, a`−j) and (aj, a`−i).
But since i 6= j, either i+ `− j > ` or j+ `− i > `, which means that one of
the two edges does not belong to E—a contradiction to H0, H1, . . . H` being
a biclique edge cover. This shows that the bipartite dimension of G is at
least ` + 1. Equality is witnessed by the bicliques Hi = (Xi, Yi, Ei) with

2A star is a bipartite graph where all other vertices are adjacent to a single vertex, and
all other vertices are mutually not adjacent.
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Xi = {ai}, Yi = {a}≤`−i, and Ei = Xi × Yi, for 0 ≤ i ≤ `. �

In the following we want to generalize the biclique edge cover technique
so that it can also be used to prove lower bounds for the size of NFCAs. In
fact, we present a generalization that can be used even for the more general
notion of E-equivalent automata, which was recently introduced in [21]. In
order to avoid confusion with the set of edges of a graph, we use here the term
D-equivalence instead of E-equivalence. Let D ⊆ Σ∗ be some language, the
so called error language. Two languages L and L′ over the alphabet Σ are
called D-equivalent if they differ only on elements from the error language D,
that is, if

(L \ L′) ∪ (L′ \ L) ⊆ D.

In this case we write L ∼D L′. Similarly, two automata A and B are D-
equivalent, if L(A) ∼D L(B). The connection between D-equivalence and
cover automata is as follows. Assume L ⊆ Σ≤` is some finite language of
order `. Then a language L′ ⊆ Σ∗ is a cover language for L if and only if
L ∼D L′, for the error language D = Σ>`. In other words, any two cover
languages L′ and L′′ for a finite language of order ` are D-equivalent, for
D = Σ>`.

We now come to our generalization of the biclique edge cover technique.
In the original technique we have to find bicliques Hi = (Xi, Yi, Ei) with
1 ≤ i ≤ k, for some k, of a bipartite graph G = (X, Y,E), such that E =⋃k
i=1Ei. In our generalization, we use two sets of edges in the bipartite

graph G, namely a set E of edges that must be covered, and a set E, with
E ⊆ E, of edges that may be covered by bicliques. We use the notation G =
(X, Y,E,E) to denote such a bipartite graph. Now an (E,E)-approximation
of G is a collection of bicliques Hi = (Xi, Yi, Ei) of G, with 1 ≤ i ≤ k for
some k, such that

E ⊆
k⋃
i=1

Ei ⊆ E.

The (E,E)-dimension of G, denoted by dim∗(G), is defined as the minimal
number of bicliques that constitute an (E,E)-approximation of G.

Now we are ready to present our lower bound technique for D-equivalent
automata. Notice that the sets E and E of edges of graph G in the following
theorem depend on the given language L and error set D by definition.
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Theorem 3. Let L and D be languages over some alphabet Σ. Moreover, let
X, Y ⊆ Σ∗ and G = (X, Y,E,E), with E = { (x, y) ∈ X × Y | xy ∈ L \D }
and E = { (x, y) ∈ X × Y | xy ∈ L ∪D }. Then the number of states of any
nondeterministic finite automaton A, with L(A) ∼D L, is at least dim∗(G).

Proof. We use a similar argumentation as in [20]. Let A = (Q,Σ, δ, q0, F )
be a nondeterministic finite automaton with L(A) ∼D L. It suffices to show
that there exists an (E,E)-approximation of G by n = |Q| bicliques. For
each state q ∈ Q we define the biclique Hq = (Xq, Yq, Eq) with

Xq = {x ∈ X | q ∈ δ(q0, x) }, Yq = { y ∈ Y | δ(q, y) ∩ F 6= ∅ },

and Eq = Xq × Yq. Clearly Hq is a biclique of G. To show that the bicliques
form an (E,E)-approximation, we have to prove that

⋃
q∈QEq contains E,

and is itself contained in E.
Let (x, y) ∈ E, which means that the word xy belongs to the language L

but not to the error language D. Because L(A) ∼D L, the word xy must also
belong to L(A). Hence, there must be some state q ∈ Q such that q ∈ δ(q0, x)
and δ(q, y) ∩ F 6= ∅, which implies (x, y) ∈ Eq. This proves E ⊆

⋃
q∈QEq.

Finally let (x, y) ∈ Eq, for some state q ∈ Q. This means that q ∈ δ(q0, x)
and δ(q, y)∩F 6= ∅, so xy ∈ L(A). Since L(A) ∼D L, we obtain xy ∈ L∪D,
which in turn implies (x, y) ∈ E. This concludes our proof. �

Notice that Theorem 3 yields the original biclique edge cover technique
when choosing the error language D = ∅, that is, when considering the special
case of classical language equivalence. Moreover, with the error language
D = Σ>` we obtain the following technique for proving lower bounds on the
state complexity of nondeterministic cover automata for finite languages of
order `.

Corollary 4. Let L ⊆ Σ∗ be some finite language of order `. Moreover, let
X, Y ⊆ Σ∗ and G = (X, Y,E,E), with E = { (x, y) ∈ X × Y | xy ∈ L } and
E = { (x, y) ∈ X × Y | xy ∈ L ∪ Σ>`, }. Then the number of states of any
nondeterministic finite cover automaton for L is at least dim∗(G), that is,
dim∗(G) ≤ ncsc(L). �

4. Conversions Between Finite Automata and Cover Automata

In this section we compare the descriptional complexity of finite automata
and cover automata, by studying the cost of conversions between these mod-
els. We consider nondeterministic as well as deterministic automata.
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4.1. From Finite Automata to Cover Automata

Clearly, a finite automaton for a finite language L is also a cover automa-
ton for that language. So the bounds ncsc(L) ≤ nsc(L) and csc(L) ≤ sc(L)
are obvious. However, the question is whether these bounds are tight in
the following sense: does there exist, for every integer n ≥ 1, a regular lan-
guage Ln that is accepted by a DFA (NFA, respectively) with n states such
that the minimal DFCA (NFCA, respectively) needs n states, too? The next
result answers this question in the affirmative for nondeterministic automata,
while for deterministic devices the bound is off by one.

In the proof of the result we use the following notion: a state q of an NFCA
A = (Q,Σ, δ, q0, F ) for a finite language L ⊆ Σ≤` is productive if there are
words u, v ∈ Σ∗, with |uv| ≤ `, such that q ∈ δ(q0, u) and δ(q, v) ∩ F 6= ∅.
Of course, states that are not productive can be safely removed without
changing the accepted language.

Theorem 5. If L is a finite language with all words having the same length `,
then ncsc(L) = nsc(L) and csc(L) = sc(L)− 1.

Proof. Let A = (Q,Σ, δ, q0, F ) be a minimal NFCA covering L. Let [`]
denote the set {0, 1, . . . , `} and define the NFA

B = (Q× [`],Σ, δ′, (q0, 0), F × [`]),

where the transition function satisfies δ′((q, i), a) = { (p, i+ 1) | p ∈ δ(q, a) },
for q ∈ Q and i ∈ [` − 1]. Clearly L(B) = L. Recall that ncsc(L) ≤ nsc(L),
so in order to prove the statement ncsc(L) = nsc(L) it is sufficient to show
that the number of productive states in the NFA B is at most ncsc(L) = |Q|.

Assume that the number of productive states in Q×[`] is greater than |Q|.
Then there are integers i, j ∈ [`], with i > j, and a state q ∈ Q of A such
that (q, i) and (q, j) are productive in B. This means that there are words ui
and vi, with |uivi| ≤ `, such that (q, i) ∈ δ′((q0, 0), ui) and δ′((q, i), vi) con-
tains a state (fi, ki) ∈ F × [`]; and similarly there are words uj and vj with
analogous conditions. In fact, from the construction of B and the fact that
all words in L have length `, we conclude |ui| = i and |vi| = ` − i, and
similarly |uj| = j and |vj| = ` − j. But then B also accepts the word ujvi
with |ujvi| < ` since

δ′((q0, 0), ujvi) ⊇ δ′((q, j), vi) 3 (fi, j + `− i).
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This is a contradiction to L ⊆ Σ`, so the number of productive states in
Q× [`] cannot be greater than |Q|.

Now let us prove the statement csc(L) = sc(L) − 1. From a minimal
DFCA A we can construct a DFA B similar as described above, but since
the transition function of a deterministic machines is total, the constructed
DFA B needs an additional non-accepting sink state which is reached after
reading more than ` input symbols. As before we can show that the number
of productive states in B is at most |Q|, so B needs most |Q|+1 states. This
shows csc(L) ≥ sc(L) − 1. To see that also csc(L) ≤ sc(L) − 1 we argue as
follows. Notice that every DFA for a language L ⊆ Σ` has a non-accepting
sink state. We can obtain an equivalent DFCA with one state less by deleting
this sink state, and re-routing the incoming transitions to the initial state
of the DFA. Surely this allows the constructed automaton to accept new
words, but the length of such words is at least ` + 1 because the shortest
word leading from the initial state to an accepting state has length `. �

From Theorem 5 and the obvious upper bound ncsc(L) ≤ nsc(L) we
obtain the following result. In fact, Theorem 5 provides the lower bound
already by unary witness languages.

Corollary 6. Let n ≥ 1 and L be a finite language accepted by a nonde-
terministic finite automaton with n states. Then n states are sufficient and
necessary in the worst case for a nondeterministic finite cover automaton to
accept L. This bound is tight already for a unary alphabet. �

Next we want to close the gap between the lower and upper bound for
the conversion from DFAs to DFCAs.

Theorem 7. Let L be a finite language accepted by a deterministic finite
automaton with n states. If n = 1 or n ≥ 4 then n states are sufficient
and necessary in the worst case for a deterministic finite cover automaton to
accept L. These bounds are tight already for binary alphabets. If n ∈ {2, 3},
or if n ≥ 2 and L is a unary language, then n − 1 states are sufficient and
necessary in the worst case.

Proof. The upper bound of n states is clear. Moreover, notice that the
only finite language that is accepted by a two-state DFA is the language {λ},
which is covered by the single-state automaton for the language Σ∗ with cover
length 0. Next assume that L ⊆ Σ∗ is a finite language that is accepted by a
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minimal DFA with three states. Then the order of L must be 1, which means
that we have L = Σ1 or L = {λ} ∪ Σ1 for some non-empty subset Σ1 ⊆ Σ.
In both cases the language L can be covered by a two-state automaton with
cover length `: if L = Σ1, we choose the cover language L′ = (Σ\Σ1)

∗ ·Σ1 ·Σ∗,
and for the case L = {λ} ∪Σ1 we use L′ = Σ∗1. This proves the statement of
the theorem for the cases n = 2 and n = 3. The case n = 1 is clear.

Next let us briefly discuss the unary case. If L is a unary language of
order `, then the minimal DFA for L is a chain of exactly n = ` + 2 states,
with a non-accepting sink state at the end. Such a DFA can be transformed
into a DFCA with one state less by deleting the sink state and re-routing its
incoming transitions to an arbitrary state. Hence we have a DFCA with n−1
states. Tightness of this bound is provided by Theorem 5.

The lower bound of n states for the case n = 4 can be seen by con-
sidering the finite language L4 = {λ, a, b, ab} over alphabet Σ = {a, b},
which can be accepted by a DFA with four states. To see that any DFCA
B = (Q,Σ, δ, q0, F ) with L(B) ∩ Σ≤2 = L4 has at least four states, we show
that the four states q0, q1 = δ(q0, a), q2 = δ(q0, b), and q3 = δ(q0, aa) must be
pairwise distinct. Since λ, a, b ∈ L4 and aa ∈ Σ≤2 \L4, we know that state q3
is non-accepting and the other three states must be accepting. Moreover, it
cannot be q0 = q1 nor q0 = q2 because this would implies aa ∈ L4 or bb ∈ L4,
respectively. Finally states q1 and q2 must also be distinct since otherwise
we would get ab ∈ L4 if and only if bb ∈ L4. Hence, every DFCA for the
language L4 needs four states.

It remains to consider the case n ≥ 5. Here we use the witness language
Ln = {an−2} ∪ { aib | 0 ≤ i ≤ n − 3 } over alphabet Σ = {a, b}, which can
be accepted by an n-state DFA. Notice that the order of Ln is ` = n − 2.
Let B = (Q′,Σ, δ′, q′0, F

′) be some DFCA for Ln and consider the sequence of
states q′i = δ′(q′0, a

i), for 0 ≤ i ≤ n− 3. Clearly all these states must be non-
accepting, and each of them leads to an accepting state on input symbol b.
Moreover, state qn−3 also leads to an accepting state on input a, and therefore
all the states q′i with 0 ≤ i ≤ n − 3 must be pairwise distinct—otherwise
reading an−2 cannot lead to an accepting state. So far we have shown that B
has at least the n − 2 non-accepting states q′i, with 0 ≤ i ≤ n − 3 and at
least one accepting state. In fact, if B has more than one accepting state,
then it has at least n states in total. Therefore assume that B has only
one accepting state q′n−2. This state is the target of every b-transition from
states q′i for 0 ≤ i ≤ n − 3. Now consider the state q′n−1 = δ′(q′n−2, b). This
state must be non-accepting because it is reached from the initial state q′0 by
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reading the word bb, which is shorter than ` = n− 2 ≥ 3 symbols, and which
does not belong to the language Ln. Moreover, state q′n−1 must be different
from all the other non-accepting states q′i, which is seen as follows. Assume
for the sake of contradiction that q′n−1 = q′i for some i with 0 ≤ i ≤ n − 3.
This means that B allows the computation

δ′(q′0, bbb) = δ′(q′n−2, bb) = δ′(q′i, b) = qn−2,

which means that the word bbb is accepted byB. Since bbb /∈ Ln but bbb ∈ Σ≤`

(recall that ` = n − 2 ≥ 3), we obtain a contradiction to L(B) ∩ Σ≤` = Ln.
Therefore, automaton B has at least n states. �

We also note that the conversion from NFAs to DFCAs was investigated
already in [31], where binary languages Ln were presented that can be ac-
cepted by an n-state NFA, while 2n−t−2t−2+2t−1 states are necessary, with
t = bn

2
c, for a deterministic finite cover automaton to accept Ln. Then they

generalize their examples to larger alphabets. The lower bound is known to
be tight if n is even, but the tight bound for odd n remains to be determined.
Asymptotically, their lower and upper bound read as Θ(k

n
1+log2 k ), which is

(up to a possible constant factor) the same behavior in the worst case as for
the conversion from NFAs to DFAs, which was determined in [3].

4.2. From Cover Automata to Finite Automata

In the previous subsection we have seen that there are finite languages
where the description size cannot be reduced when changing the descriptional
model from finite automata to cover automata. In this section we now con-
sider the inverse conversion: given a cover automaton for a finite language,
how large can a minimal finite automaton for that language become? In this
setting we will see that the number of states of a cover automaton alone is
not a fair size measure. In fact, we propose that a reasonable size measure
for cover automata must also take the cover length into account: for every
integer ` ≥ 0 the finite language {a}≤` can be covered by a single-state cover
automaton, but a NFA for this language has at least `+ 1 states. Therefore,
if we start with a cover automaton with n states that describes a finite lan-
guage of order `, then the number of states of an equivalent finite automaton
should be a function in n and `.

Since the language L described by a cover automaton A with cover
length ` satisfies L = L(A) ∩ Σ≤`, a finite automaton for L can be obtained
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by applying a cross product construction on A and an automaton for Σ≤`,
similar as in the proof of Theorem 5. The states of the constructed automa-
ton are pairs (q, i), where q is a state of A, and i is a counter for the word
length. An NFA for the language Σ≤` has `+ 1 states, while a DFA has `+ 2
states. Therefore, if A is a nondeterministic cover automaton with n states,
then one can construct an equivalent NFA with at most n · (`+1) states, and
if A is deterministic, then one constructs a DFA with n · (`+ 2) states. This
yields the upper bounds nsc(L) ≤ ncsc(L) · (`+1) and sc(L) ≤ csc(L) · (`+2)
for finite languages L of order `. In the upcoming lemma we show that
these bounds can be slightly reduced. In the following we do not consider
languages of order ` = 0, because the only such language is {λ}, which is
accepted by a single-state NFA and a two-state DFA. Moreover, the case
where ncsc(L) = 1 is also omitted—here it is easy to see that the upper
bounds nsc(L) ≤ `+ 1 and sc(L) ≤ `+ 2 apply, and optimality is witnessed
by the language L = Σ≤`.

Lemma 8. Let n ≥ 2 and A be an n-state nondeterministic cover automaton
for a finite language L of order ` ≥ 1. Then one can construct a nondeter-
ministic finite automaton for L that has at most n · (`− 1) + 2 states. If A is
deterministic, then one can construct a deterministic finite automaton for L
with n · (`− 1) + 3 states.

Proof. Let A = (Q,Σ, δ, q0, F ) be an NFCA for the language L ⊆ Σ≤`, that
is, with L(A)∩Σ≤` = L. We construct an NFA A′ = (Q×[`],Σ, δ′, (q0, 0), F×
[`]) where the transition function is defined by δ′((p, i), a) = { (q, i+ 1) | q ∈
δ(p, a) }, for q ∈ Q, 0 ≤ i ≤ `− 1, and a ∈ Σ. In states (q, `) no transitions
are defined, that is, δ((q, `), a) = ∅, for q ∈ Q and a ∈ Σ. Clearly this
automaton accepts the language L(A) ∩ Σ≤` = L and has n · (` + 1) states.
We now show that some states of A′ can be omitted. First notice that the
only reachable state with 0 in its second component is (q0, 0). Moreover,
all states of the form (q, `), with q ∈ Q \ F , can be removed because no
transitions are defined in these states. Finally, all states (qf , `) with qf ∈ F
can be merged to a single accepting state (•, `). Hence the state set of A′

can be restricted to {(q0, 0), (•, `)} ∪Q×{1, 2, . . . , `− 1} which gives a total
number of n · (`− 1) + 2 states.

In caseA is a deterministic cover automaton, a similar construction can be
applied to obtain an equivalent DFA. Again, states (qf , `), with qf ∈ F , are
merged into a single accepting state (•, `), and states (q, `), with q ∈ Q \ F ,
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are removed. To deal with the resulting undefined transitions, we add an
additional non-accepting sink state (•, >`), which is also the target state for
transitions from state (•, `). The obtained automaton has n · (` − 1) + 3
states. �

Next we show that the constructions from Lemma 8 cannot be improved
in general, by providing a matching lower bound. Observe that the following
lemma even provides a lower bound for the conversion from deterministic
cover automata to nondeterministic finite automata.

Lemma 9. For all integers n ≥ 2 and ` ≥ 1 there exists a finite language L
of order ` that is described by a deterministic n-state cover automaton, such
that any nondeterministic finite automaton for L needs n · (`− 1) + 2 states,
and any deterministic finite automaton for L needs n · (`− 1) + 3 states.

Proof. Let n ≥ 2 and ` ≥ 1, and define the DFCA A = (Q,Σ, δ, q0, F ) with
input alphabet Σ = { ai, bi | 1 ≤ i ≤ n− 1 }, state set Q = {q0, q1, . . . , qn−1},
final states F = Q\{q0}. The transition function δ is defined for 1 ≤ i, j, k ≤
n− 1 with i 6= j as follows:

δ(q0, ai) = qi, δ(q0, bi) = q0, δ(qi, ak) = q0, δ(qi, bi) = qi, δ(qi, bj) = q0.

Let L = L(A)∩Σ≤`. We show that every NFA for L has at least n ·(`−1)+2
states, by proving that the set

S = { (bk1, b
`−1−k
1 a1) | 0 ≤ k ≤ `− 1 } ∪ {(b`−11 a1, λ)}

∪ { (aib
j−1
i , b`−ji ) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ `− 1 }

is an extended fooling set for L. First notice that for each pair (x, y) ∈ S we
have xy ∈ L, because b`−11 a1 leads to the accepting state q1, and aib

`−1
i to the

accepting state qi. Now let (x, y) and (x′, y′) be two distinct pairs from S.
We have to show that xy′ /∈ L or x′y /∈ L:

1. First assume (x, y) = (b`−11 a1, λ). Notice that (b`−11 a1, λ) is the only
pair in S with λ as second component. Hence the word xy′ cannot
belong to L because |xy′| > `. The case where (x′, y′) = (b`−11 a1, λ) is
symmetric.

2. Similarly, when combining strings from two pairs (x, y) = (bk1, b
`−1−k
1 a1)

and (x′, y′) = (bk
′

1 , b
`−1−k′
1 a1), with k 6= k′, one obtains a word of length

greater than `, which cannot belong to the language L.
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3. Next consider the pairs (x, y) = (bk1, b
`−1−k
1 a1) and (x′, y′) = (aib

j−1
i , b`−ji ).

Here we find bk1b
`−j
i /∈ L because this word leads to the non-accepting

state q0 in A. The case where (x, y) and (x′, y′) are interchanged is
symmetric.

4. Finally it remains to consider the case where (x, y) = (aib
j−1
i , b`−ji ) and

(x′, y′) = (ai′b
j′−1
i′ , b`−j

′

i′ ), with (i, j) 6= (i′, j′). If j 6= j′ then we have
|xy′| > ` or |x′y| > `, hence one of those words does not belong to L. In

the case j = j′ we have i 6= i′, and then we have xy′ = aib
j−1
i b`−j

′

i′ /∈ L,
because reading the prefix aib

j−1
i takes A to state qi and from there,

the suffix b`−j
′

i′ takes A back to the non-accepting state q0.

We have shown that a minimal NFA for the language L has at least
n · (` − 1) + 2 states. Now one readily sees that a minimal DFA for L has
at least n · (`− 1) + 3 states: because L is a finite language, a minimal DFA
for L needs a non-accepting sink-state, which is of course not present in a
minimal NFA. �

From Lemmata 8 and 9 we obtain the following result.

Theorem 10. Let L be a finite language of order ` ≥ 1 that is described by
a nondeterministic cover automaton A with n ≥ 2 states. Then n · (`−1)+2
states are sufficient and necessary in the worst case for a nondeterministic
finite automaton to accept L. Moreover, if A is a deterministic cover au-
tomaton for L, then n · (`− 1) + 3 states are sufficient and necessary in the
worst case for a deterministic finite automaton to accept L. �

Observe that the proof for the lower bound from Lemma 9 uses 2n − 2
alphabet symbols. In fact, one can also show that the bounds nsc(L) ≤
ncsc(L) · (` − 1) + 2 and sc(L) ≤ csc(L) · (` − 1) + 3 for the conversions
from cover automata to finite automata are not tight for languages over an
alphabet of constant size. For the deterministic case, this is easy to see:
assuming a k-letter alphabet Σ, at most k different states of the form (q, 1)
are reachable from the initial state (q0, 0) in the DFA constructed from a
DFCA as shown in the proof of Lemma 8.

Although this argumentation does not hold for nondeterministic automata,
where every state of the given NFCA could be reachable in one step from
the initial state, the number of states of an equivalent minimal NFA still de-
pends on the number of alphabet symbols: when using the construction from

17



Lemma 8 to obtain an NFA A′ for the language L ⊆ Σ≤`, the automaton A′

has a distinguished “last” accepting state (•, `), which has no outgoing tran-
sitions. This state is only reachable from states of the form (q, ` − 1), and
from such states no other state is reachable. Assume that two such states
(p, `− 1) and (q, `− 1) go to state (•, `) on the same set of input letters. If
additionally p and q are of same acceptance value, then clearly they can be
merged into a single state. Since a k-letter alphabet Σ has 2k− 1 non-empty
subsets, the number of accepting states of the form (q, `− 1) can always be
reduced to 2k − 1, and similarly for the non-accepting states. So in total
there are at most 2 · (2k− 1) states of the form (q, `− 1), which may be large
compared to k, but it is still a constant.

The search for exact bounds depending on the size of the input alphabet
is left for further research.

5. Determinization of Finite Cover Automata

In this section we continue our descriptional complexity studies of cover
automata: we investigate the cost of determinization, that is, the conversion
from a nondeterministic to a deterministic cover automaton. A classical
result in the theory of finite automata is that every n-state NFA can be
converted by the so-called power-set construction to an equivalent DFA with
at most 2n states [2]. Moreover, it is known that this bound is tight in the
sense that for every n ≥ 1 there exists a language accepted by a minimal
n-state NFA, and for which the minimal DFA needs exactly 2n states [32,
33, 34]. Now the question is to which extent these results carry over to
cover automata. Clearly, since the power-set construction for finite automata
preserves the accepted language, it can be used to convert an NFCA into an
equivalent DFCA. Thus, the following is immediate.

Lemma 11. Let L be a finite language described by a nondeterministic cover
automaton with n ≥ 1 states. Then one can construct a deterministic cover
automaton for L that has at most 2n states. �

Our next goal is to prove a matching lower bound of 2n states for the
determinization of n-state NFCAs. The next fact we present is useful to
show that a number of worst case results known for the state complexity of
deterministic finite automata carry over to the setting of cover automata.
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Theorem 12. Assume L is a regular language over Σ with sc(L) = n, and
let L′ = L ∩ Σ≤n+2n. Then csc(L′) = n.

Proof. Assume A = (Q,Σ, δ, q0, F ) is a minimal DFA accepting LR, and
let P(AR) = (Q′,Σ, δ′, q′0, F

′) be the DFA obtained by first reverting this
automaton, thus obtaining a nondeterministic finite automaton with multi-
ple initial states, and then applying the lazy power-set construction to this
automaton. Here, lazy means that only the subsets reachable from the start
state are constructed. Formally we have Q′ ⊆ 2Q, q′0 = F , F ′ = {P ∈ Q′ |
q0 ∈ P } and δ′(P, a) = { q | δ(q, a) ∈ P }, for P ∈ Q′ and a ∈ Σ. Then
Brzozowski’s theorem [35] asserts that this automaton is a minimal DFA for
the reversed language L, hence it has n states.

Our goal is to show that every two distinct states R, S ∈ Q′ of P(AR) are
dissimilar with respect to L′. Assume q ∈ S \R (if S ⊂ R, exchange the roles
of R and S). Let vq be a word of minimal length such that the automaton A
reaches state q on reading vq backwards, that is δ(q0, v

R
q ) = q. Then in

the reversed automaton P(AR) we have q0 ∈ δ′(S, vq), but q0 /∈ δ′(R, vq),
since A is deterministic. By definition of F ′ this means δ′(S, vq) ∈ F ′ and
δ′(R, vq) /∈ F ′. Next we want to estimate the length of vq. By symmetry, A
can be also obtained by reverting P(AR) and then applying the lazy power-
set construction. Thus the number of states in A is at most 2n, and we can
conclude that |vq| ≤ 2n. We now choose for every state P in the automaton
P(AR) a word uP such that |uP | ≤ n and δ′(F, uP ) = P . Then we have
|uRvq|, |uSvq| ≤ n+ 2n, and

uRvq /∈ L but uSvq ∈ L.

As the languages L and L′ agree on all words of length at most n+ 2n, this
establishes that R and S are dissimilar with respect to L′. �

Theorem 12 implies that if the order of the language is large compared to
the size of the NFA, then determinization of cover automata is as expensive
as for usual finite automata. In particular, classical examples for finite au-
tomata [32, 33, 34] show that the full blow-up from n states to 2n states may
be necessary for converting an NFCA into an equivalent DFCA. Together
with Lemma 11 we obtain the following result.

Corollary 13. Let L be a finite language that is described by a nondetermin-
istic cover automaton with n ≥ 1 states. Then 2n states are sufficient and
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necessary in the worst case for a deterministic cover automaton to accept L.
�

A natural question is now whether the full blow-up can be reached if the
order of the described language is small compared to the number of states in
the given NFCA. First, recall that every finite language L of order ` over a k-
letter alphabet satisfies sc(L) ≤ (1+o(1))k

`+2

dk`
with dk = (k−1)2 log k; see [4].

This shows that the full blow-up cannot be reached if ` is too small compared
to n. From that result and the fact that csc(L) ≤ sc(L), the following bounds
for the size of a deterministic cover automaton can be derived. In fact,
since the proof of the next result only uses the above bound on sc(L), the
statements also hold for the determinization of finite automata.

Theorem 14. Let L be a finite language of order ` over a k-letter alpha-
bet Σ and assume L is described by a nondeterministic finite cover automaton
with n states.

1. If (`+ 2) · log k − log `+ 1 < n, then csc(L) < 2n, for large enough n.

2. if ` ∈ o(n), then csc(L) ∈ 2 o(n),

3. if ` ∈ O(log n), then csc(L) ∈ nO(1),

4. if (`+ 2) · log k− log `+ 1 < log n, then csc(L) < n, for large enough n.

Proof. We solve the inequality (1 + o(1)) k`+2

`(k−1)2 log k < 2n, where the left-

hand side is the maximum state complexity among all languages L ⊆ Σ≤`,
see [4]. By taking logarithms we obtain

log(1 + o(1)) + (`+ 2) · log k − log `− (2 · log(k − 1) + log log k) < n

By observing that log2(1 + o(1)) < 1 for large enough n, and omitting the
negative term −(2 · log(k−1) + log log k), we get the first statement. Clearly
the fourth statement can be shown in the same way when starting with the
inequality (1+o(1)) k`+2

`(k−1)2 log k < n. Similarly the second and third statement

can be derived by rewriting k as 2log2 k. �

The fourth statement in the above theorem is of particular practical rele-
vance: in this case, the given n-state NFCA is not minimal, and determiniza-
tion followed by minimization yields a smaller cover automaton. Thus, for a
minimal n-state NFCA we always have (`+ 2) · log k − log `+ 1 ≥ log n.
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In contrast to languages of order less than n, where the blow-up of 2n

states cannot be achieved, there are quite natural examples reaching the full
blow-up already for order linear in the number of states of the NFCA. The
example used in the following proof is essentially due to [36, Lemma 2]:

Theorem 15. Let Ln = (a+ (a · b∗)n−1 · a)
∗ ∩ Σ≤5n−2. Then Ln can be

covered by an n-state nondeterministic cover automaton, but the smallest
deterministic cover automaton for Ln has at least 2n states.

Proof. Let Kn be the language (a+ (a · b∗)n−1 · a)
∗

as introduced in [36],
and define Ln = Kn ∩ Σ≤5n−2. The language Kn is accepted by an n-state
NFA, thus it is covered by an NFCA with n states. Along the lines of [36,
Lemma 2], it can be proved that when applying the power-set construction,
all 2n subsets are reachable by a string of length at most 3n, and each pair
of subsets can be distinguished by a string of length at most 2n− 2. Hence
all 2n states of the resulting DFA are pairwise dissimilar, so the minimal
DFCA has 2n states. �

6. Average Size Comparisons of Finite Cover Automata

This section is devoted to the average case state complexity of DFCAs
and NFCAs, when choosing a finite language of a certain “size” ` uniformly
at random from all finite languages of that particular size. Here size means
that all words of the language are either of the same length `, or of length
at most `. This model was used in [6] to compare the number of states or
transitions of ordinary finite automata on average. There it is shown that
almost all DFAs accepting finite languages over a binary input alphabet have
state complexity Θ(2`/`), while NFAs are shown to perform better, namely

the nondeterministic state complexity is in Θ(
√

2`). Interestingly, in both
cases the aforementioned bounds are asymptotically like in the worst case.
As we will see, a similar situation emerges for finite cover automata as well.
The first theorem gives us the expected number of states a DFCA has on
average, if we assume that all finite languages from P(Σ≤`), that is, the
power-set of Σ≤`, are equiprobable.

Theorem 16. Let Σ be an alphabet of size k and ck = (k − 1) log k. Then

E[csc(L)] ≥ (1−o(1)) k
`

ck`
, if L is a language drawn uniformly at random from

the power-set of Σ≤`.
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Proof. The argument is similar as for an analogous result on finite au-
tomata, in place of cover automata, from [6]. It suffices to show that the

number of languages acceptable by DFCAs with at most (1 − δ) k`
ck`

states,

for 0 < δ < 1, is in o(|P(Σ≤`)|); the result then follows using Markov’s
inequality.

Let gk(m) be the function counting the number of languages over Σ ac-
ceptable by DFAs with at most m states over a k-letter alphabet. In [37,

Theorem 9] it was shown that gk(m) ≤ m2mmkm

m!
. For finite languages of or-

der at most `, each m-state minimal DFA gives rise to at most `+ 1 different
minimal DFCAs, so the number of subsets Σ≤` acceptable by DFCAs with
at most m states is at most (`+ 1) · gk(m). Using

logm! >

∫ m

1

log x dx = m logm− 1

ln 2
(m− 1),

and the fact that 1
ln 2

< 3
2
, we obtain log ((`+ 1) · gk(m)) = log(gk(m)) +

log(` + 1) < (k − 1)m logm + 5
2
m + logm + log(` + 1). Thus for every

constant δ with 0 < δ < 1,

log

(
(`+ 1) · gk

(
(1− δ) k

`

ck`

))
< log(`+ 1) + (1− δ)

(
1 +

5

2ck`

)
k` + ` log k

= (1− δ)k` + o(k`),

and for ` large enough, this is much smaller than k` < log |P
(
Σ≤`

)
|, that is

log(`+ 1) + log gk

(
(1− δ) k

`

ck`

)
− log |P

(
Σ≤`

)
|

tends to−∞. We can deduce that lim`→∞(`+1)·gk((1−δ) k
`

ck`
)/|P

(
Σ≤`

)
| = 0,

for every such δ. �

Regarding an upper bound, it is known from [4] that sc(L) ≤ (1 +

o(1))k
`+2

dk`
, as ` tends to infinity, with dk = (k − 1)2 log2 k, for languages

L ⊆ Σ≤` and alphabet size k. This generalized a previous result of [5]. Re-
call that the size of a minimal DFA for a finite language is an upper bound
for the size of a minimum DFCA; and the state complexity in the worst case
is of course an upper bound for the average state complexity. So the above
average case result is tight up to a factor of at most (1 + o(1)) k2

(k−1) . Next we
turn our attention to the average state complexity of NFCAs.
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Theorem 17. Let Σ be an alphabet of size k. Then for large enough ` we
have E[ncsc(L)] > k

`
2
−1, if L is a language drawn uniformly at random from

the power-set of Σ≤`.

Proof. We generalize a result from [38] regarding nondeterministic finite
automata over binary alphabets.

Let Gk(m) denote the number of distinct regular languages accepted by
NFAs with m states over a k-letter alphabet. Then Gk(m) ≤ 2m2km

2
, as

shown in [37]. If we consider finite languages of order at most `, every NFA
counted by Gk(m) gives rise to at most `+1 different finite languages covered
by NFCAs with at most m states. Now we have

(`+ 1) ·Gk(k
`
2
−1) ≤ (`+ 1) · 2 · k

`
2
−12k·(k

`
2−1)2

= (`+ 1) · 2 · k
`
2
−1︸ ︷︷ ︸

=o

(√
2k`

)
k
√

2k` = o
(

2k
`
)

;

and thus the fraction of “nice” subsets of Σ≤`, which can be covered by
NFCAs having at most k

`
2
−1 states, tends to zero as ` grows large. �

A worst case upper bound for the nondeterministic state complexity of
subsets of Σ≤` is given in [6] for binary alphabets. Generalizing this result
to cover automata and larger alphabets, the bound reads as follows:

Theorem 18. Let Σ be an alphabet of size k. Then

ncsc(L) ≤ nsc(L) <
3

k − 1

√
k`,

if L is any subset of Σ≤`, i.e., L ⊆ Σ≤`.

Proof. There was a minor mistake in the computation of the final esti-
mation of the corresponding result in [6]. So, for convenience, we include a
proof of the corrected bound here, which also covers the case of non-binary
alphabet size.

Let µ = b(` − 1)/2c and ν = d(` − 1)/2e. We construct an NFA A =
(Q, {0, 1}, δ, pλ, F ), where the state set Q = P1 ∪ P2 (the union is disjoint)
with

P1 = { pw | w ∈ {0, 1}∗ and |w| ≤ µ }
and
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P2 = { qw | w ∈ {0, 1}∗ and |w| ≤ ν },

the set F = {qλ} ∪ { pλ | λ ∈ L }, and the transition function is specified as
follows:

1. For all pw ∈ P1 and a ∈ {0, 1}, the set δ(pw, a) contains the element pwa.

2. For all w ∈ L \ {λ}, if w = xay is the unique decomposition, where
|x| = b(|w| − 1)/2c, a is a single letter, and |y| = d(|w| − 1)/2e, then
let δ(px, a) contain the element qy.

3. For all qw ∈ P2 \ {qλ} and a ∈ {0, 1}, the set δ(paw, a) contains the
element qw.

This completes the construction of the NFA (which can also be interpreted
as a NFCA). It is easy to see that for the number of states in A, we have

|P1|+ |P2| =
kµ+1 − 1

k − 1
+
kν+1 − 1

k − 1
<

3

k − 1

√
k`.

It remains to show that L(A) = L. Note that every state pw in P1 is only
reachable by the word w from the initial state pλ, and that for every state qw
in P2 there is only one path leading to the final state qλ. So every transition
leading from P1 to P2 leads to the acceptance of exactly one word in L. This
proves the stated claim. �

7. Conclusions

We completed the picture of lower bound techniques for nondeterminis-
tic finite cover automata, and solved the problems left open in [18]. Then
we determined the precise best-case and worst-case bounds for conversions
between DFCAs and DFAs, as well as between NFCAs and NFAs. In [31], al-
most tight bounds for the conversion between NFAs and DFCAs were given.
Determining the precise bound in this case remains an open problem.

When the length ` of the longest word is much smaller than the number n
of states in a minimal cover automaton, then the succinctness gain offered by
finite cover automata over finite automata is very modest, even in the best
case. We note that this is the case in the area of natural language processing:
in [39] they construct a minimum 29317-state DFA accepting 81142 English
words. Of course, almost all common English words have ` < 20. Similarly,
in [40] they construct an NFA accepting roughly 230000 Greek words, whose
number of states is of order 105.
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Finally, a recent experimental study [41] showed that for binary finite lan-
guages, the expected reduction in the number of states provided by DFCAs is
negligible. Our analysis of the average case provides a theoretical underpin-
ning of their observations. One may study further random models of finite
languages, e.g., a Bernoulli-type model [6], and one based on the sum of word
lengths [42].
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