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Abstract. We give an overview of some structural complexity measures
and width parameters on digraphs, relate them to each other, and discuss
their computational complexity aspects. Particular attention is given to
cycle rank, perhaps the oldest of these measures to be studied in the
literature, which turns out to be intimately related to structural and
descriptional complexity aspects of regular expressions. Some new re-
sults on cycle rank thus have immediate implications in formal language
theory.

1 Introduction

In the theory of undirected graphs, structural complexity measures for graphs,
such as treewidth and pathwidth, have gained an important role, both from
a structural and an algorithmic viewpoint, see e.g. [5] for a mainly structural
account. However, networks arising in some domains are more adequately mod-
eled as having directed edges. Therefore in recent years, attempts have been
made to lift such measures and parts of the theory of undirected graphs to the
case of digraphs [1–3, 17, 18]. We discuss some of these measures, relate them
to each other, and investigate their algorithmic aspects. Notably, treewidth as
the most successful notion admits several competing generalizations to the case
of digraphs, and there currently seems to be no commonly accepted generaliza-
tion of this notion. We decided to let others judge and will discuss these only
as far as needed. Interestingly, we are able to show that all discussed complex-
ity measures bound each other within a factor logarithmic in the order of the
graph, paralleling the case of undirected graphs [4]. We focus in particular on
the cycle rank, a digraph complexity measure originally defined in the context of
formal languages [6], and present new applications of this concept to the theory
of structural and descriptional complexity of regular expressions.

2 Preliminaries

We assume the reader is familiar with standard notions in graph theory, as
contained in [5], so we only fix the notation and a few specialities below. A
digraph G = (V,E) consists of a finite set of vertices V and a set of edges E ⊆ V 2.



We refer to an edge of the form (v, v) as a loop; A digraph without loops is
called loop-free. If the edge relation of a digraph G is symmetric, we say G is
an (undirected) graph. For a digraph G, by taking the symmetric closure of
the edge relation, we obtain its undirected version

←→
G . For a subset of vertices

U ⊆ V , let G[U ] denote the induced sub(di)graph (U,E ∩ U × U), which is
obtained by restricting the vertex set of G to U and redefining the edge set E
appropriately. In this context, we will often use G−U as a shorthand for G[V \U ]
and G− v for G[V \ {v}]. A subset of vertices U ⊆ V is strongly connected if for
every v ∈ V there is a (possibly empty) path from v to itself. Maximal strongly
connected subsets of V are called strongly connected components (SCCs); a
strongly connected subset S is nontrivial if the subdigraph G[S] induced by S
contains at least one edge (note that this also allows the case S = {v} if v has a
loop). A digraph is acyclic if all of its strongly connected components are trivial.

3 Complexity Measures on Digraphs

This section contains a discussion of different connecitivity measures on digraphs.
We begin with an inductive definition of cycle rank, perhaps the oldest digraph
complexity measure, defined in the 1960s by Eggan and Büchi [6], which plays
a prominent role in this paper.

Definition 1. The cycle rank of a directed graph G = (V,E), denoted by r(G),
is inductively defined as follows: If G is acyclic, then r(G) = 0. If G is strongly
connected and E 6= ∅, then r(G) = 1 + minv∈V {r(G − v)}. If G is not strongly
connected, then r(G) equals the maximum cycle rank among all SCCs of G.

We note that the requirement E 6= ∅ in the above definition allows to differen-
tiate between acyclic digraphs and otherwise acyclic digraphs with loops. Next
we introduce the weak separator number of a digraph, given in [11] as a gener-
alization of separator number [4, 16] to digraphs.

Definition 2. Let G = (V,E) be a digraph and let U ⊆ V be a set of vertices.
A set of vertices S is a weak balanced separator for U if every SCC of G[U \S]
contains at most 1

2 |U | vertices. The weak separator number of G, denoted by
s(G), is defined as the maximum size, taken over all subsets U ⊆ V , among the
minimum weak balanced separators for U .

The following is shown in [11]:

Lemma 3 ([11]). Let G be a digraph with n vertices and weak separator number
at most k. Then r(G) ≤ 1 + k · log n.

The last measure we will discuss, directed pathwidth, was according to [1] orig-
inally defined by Reed, Seymour and Thomas as a generalization of undirected
pathwidth to digraphs.

Definition 4. Given a digraph G = (V,E), a directed path decomposition of G
is a sequence W1, W2, . . . ,Wr of subsets of V , called bags, such that a) each
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Fig. 1. An example digraph and a directed elimination tree for it.

vertex is contained in at least one bag, b) for all i < j < k holds Wi ∩Wk ⊆Wj,
and c) for each edge (u, v) in E, there is a bag containing both endpoints, or
there exist i, j with i < j such that the tail u is in Wi and the head v is in Wj.
The width of a directed path decomposition is defined as the maximum cardinality
among all bags minus 1. The directed pathwidth is defined as the minimum width
among all directed path decompositions for G.

How does cycle rank relate to directed pathwidth? We first note that the cycle
rank can be equivalently defined using decompositions, compare [15]:

Definition 5. A directed elimination tree for a nontrivially strongly connected
digraph G is a rooted tree T = (T , E) having the following properties:

a) T ⊆ V × 2V , and if (x, X) ∈ T , then x ∈ X.
b) The root of the tree is (v, V ) for some v ∈ V .
c) There is no pair distinct vertices of the form (x, X) and (y, X) in the forest.
d) If (x, X) is a node in T , and G[X] − x has j ≥ 0 nontrivial strongly con-

nected components Y1, . . . , Yj, then (x, X) has exactly j children of the form
(y1, Y1), . . . (yj , Yj) for some y1, . . . , yj ∈ V .

A directed elimination forest for a digraph G with k ≥ 0 nontrivial SCCs
C1, . . . Ck, is a rooted forest consisting of directed elimination trees for G[Ci],
1 ≤ i ≤ k.

Figure 1 illustrates this concept by an example. It is shown in [15] that the
minimum height among all directed elimination forests for G equals the cycle
rank of G. Interestingly, the concept of elimination forests was apparently redis-
covered in the context of sparse matrix factorization, see [19] for the undirected
case and [7] for the directed case. The equivalence of these concepts is best seen
by [7, Thm. 3.3]. We can now relate cycle rank to directed pathwidth.

Theorem 6. Let G be a digraph. Then dpw(G) ≤ r(G).



Proof (Sketch). If G is acyclic, then r(G) = 0 and dpw(G) = 0. Otherwise, we
transform a directed elimination forest of minimum height into a directed path
decomposition recursively as follows. If the forest has roots (x1, C1), (x2, C2),. . . ,
(xk, Ck), order the SCCs topologically, and recursively compute a directed path-
decomposition of width r(G)− 1 for each digraph G[Ci]− xi. Add the vertex xi

to each bag in the respective decomposition to get each a decomposition of
width r(G). Concatenating the k individual directed path decompositions while
respecting the above topological order, we obtain a directed path decomposition
of width r(G) for G. ut

Currently, there are a few competing candidates for generalizing treewidth to
digraphs, among them D-width [18] and DAG-width [3, 17]. Quite a few more
proposals are discussed in these references; all proposed candidates share the
property that they specialize on symmetric digraphs to undirected treewidth.
For formal definitions, see the given references. We obtain the following relation:

Theorem 7. Let G be an n-vertex digraph. Then

s(G)− 1 ≤ D-width(G) ≤ DAG-width(G) ≤ dpw(G) ≤ r(G) ≤ 1 + s(G) · log n.

Proof. We establish the inequalities from left to right. In the undirected case,
the separator number of a graph is bounded above by its treewidth plus one. An
analogous theorem for D-width is proved by the author in [10].

To compare D-width and DAG-width, we use the fact that both admit an
equivalent formulation as the number of cops required to catch the robber in
certain cops and robber games. In the game for DAG-width k, the k cops have
to catch a visible robber on the graph G. In each turn, some cops use helicopters
to change their position, while others stay at a vertex. The robber can flee in
each step along a directed path in G not blocked by a cop, and the cops are
not allowed to revisit any vertex once vacated [3, 17]. The game for D-width k
has the same rules, but the robber player is not allowed to leave his current
strongly connected component induced by the non-blocked vertices [8], thus it
is no harder for the cops to catch the robber than in the previous game.

The third inequality follows from the fact that every path decomposition can
be seen as a DAG-decomposition [3], and the last two inequalities are literally
Lemma 3 and Theorem 6. ut

We turn to the question of computational complexity.

Theorem 8. Given a digraph G and an integer k, determining whether the
cycle rank of G is at most k is NP-complete. This even holds if G is strongly
connected.

Proof. Membership in NP can be seen by the equivalent definition using directed
elimination trees: every such tree contains at most |V | tree vertices, and each
tree vertex is of size is at most |V |. Such a witness can be guessed, and it can
be verified in polynomial time that it is indeed an elimination tree of height at
most k.



For NP-hardness, we use a corresponding result known for the undirected
case. Given a symmetric loop-free digraph G, it is easy to see (e.g. by [16,
Lem. 2.2]) that an undirected elimination tree of height k in the sense of [4,
16] corresponds to a directed elimination tree of height k − 1 in our sense (the
minus one is only due to a different definition of height). However, determining
undirected elimination tree height is NP-complete [4], even for (strongly) con-
nected graphs. ut

How to cope with this negative result? A straightforward implementation deter-
mining cycle rank according to Definition 1 requires inspecting n! possibilities
on a graph with n vertices, as witnessed by the complete graph Kn. Clearly, we
cannot expect a polynomial-time algorithm, but still we can do much better:

Theorem 9. The cycle rank of an n-vertex digraph can be computed in time
and space 2n · nO(1) in the uniform random access model.

Proof. We show how the alternative characterization of the cycle rank of a di-
graph G = (V,E) in terms of the directed elimination forests from Definition 5
can be turned into a dynamic programming scheme. We only consider the case G
itself is nontrivially strongly connected—otherwise, we obtain the cycle rank by
taking the minimum among the cycle ranks of the nontrivial SCCs of G. For a
nontrival strongly connected subset of vertices X ⊆ V and a vertex x ∈ X, let
cr(x, X) denote the minimum height among all elimination forests for G with
root (x, X). Then r(G) = minv∈V r(v, V ), so it suffices to design an algorithm
computing r(v, V ) for each v ∈ V . By inspecting Definition 5, we obtain the
recurrence

r(x, X) =

{
1 if G[X]− x is acyclic
1 + maxY miny∈Y r(y, Y ) otherwise

(1)

Here Y runs over all nontrivial SCCs of G[X] − x (of which there can be at
most |X|−1). This recurrence can be transformed into a dynamic programming
scheme with memoization, requiring large stack memory, or into a botton-up
lookup scheme, as follows:

1. Build a list L of all pairs (x, X) with G[X] a strongly connected subgraph
and x ∈ X, sorted by the size of X.

2. Let D be an (initially empty) dictionary for storing the value r(x, X) for all
keys (x, X) with G[X] a strongly connected subgraph and x ∈ X.

3. For all x ∈ (x, X), compute cr(x, X) according to Eqn. (1), using the (at
most |X|2) known values r(y, Y ), which are already stored in D. Store the
result in D.

Using reasonably efficient standard algorithms for sorting according to a small
number of keys, maintaining dictionaries supporting insert and find, and comput-
ing all SCCs of a graph, the details can be implemented such that the algorithm
runs in time and space 2n · nO(1). ut



The reader is invited to try the above algorithm on the digraph depicted in
Figure 1. Obviously, the bottleneck in the above algorithm is the requirement
of enumerating and and storing all strongly connected subsets of a digraph. We
expect that the number of these sets is often much smaller than 2n, a number
which is reached by a complete graph. An interesting question is whether there
is an algorithm listing the set S of all strongly connected subsets of an n-vertex
digraph in time |S| · nO(1).

Known computational complexity aspects for the other digraph complexity
measures under consideration are summarized in Table 1.

Complexity Decision Size of decomposition References
measure problem for width k

s(G) ? n. a. [11]
D-width(G) NP-hard nO(k) [8, 18]

DAG-width(G) NP-hard nO(k) [3, 17]
dpw(G) NP-complete nO(1) [2]

r(G) NP-complete nO(1) Here
Table 1. Computational complexity aspects of digraph complexity measures.

In addition to the open problems suggested by the gaps in Table 1, we note
that the undirected counterpart of Theorem 7 in [4] has impressive consequences
on the approximability of the (undirected counterparts of) all these measures
because of the existence of an approximation algorithm for the separator number
of an undirected graph. An apparent question is now whether the weak separator
number admits a similar polynomial-time approximation.

4 Cycle Rank and Regular Expressions

We turn to applications. The cycle rank of digraphs is intimately related to
structural and descriptional complexity aspects of regular expressions. The star
height of a regular language L, denoted by h(L), is defined as the minimum
nesting depth of stars in any regular expression describing L. The following rela-
tion between star height and the cycle rank of nondeterministic finite automata
(NFAs) was shown already in the seminal paper on star height:

Theorem 10 (Eggan’s Theorem). Let L be a regular language. Then

h(L) = min{ r(A) | A an NFA accepting L }

Here, r(A) denotes the cycle rank of the digraph underlying the transition struc-
ture of A. Recently, Eggan’s Theorem was used in combination with Lemma 3
to obtain a lower bound technique for the minimum required size of regular ex-
pressions for a given language [11]—for further applications of that technique,
see [9]. For convenience, we briefly sketch the idea.



Theorem 11 ([11]). Assume L is a regular language described by a regular
expression of size n. Then n = 2Ω(h(L)).

Proof (Idea.). The standard construction for recursively transforming a regular
expression of size n into a finite automaton gives an NFA A with O(n) states.
The undirected transition structure

←→
A of this automaton is essentially series-

parallel and thus the latter graph has undirected separator number of constant
size. Note that for any digraph G, the undirected separator number of

←→
G can be

never smaller than s(G). Thus using Eggan’s Theorem and Lemma 3, we have
h(L) ≤ h(A) ≤ 1 + O(1) · log O(n) = O(log n), or equivalently n = 2Ω(h(L)). ut

Of course, the minimum in Eggan’s Theorem is taken over infinitely many NFAs,
and indeed for quite some time, it was unknown whether there exists an algo-
rithm deciding the star height problem: given a deterministic finite automaton
(DFA) A and an integer k, determine whether the star height of L(A) is at
most k, a question raised in [6]. Although the problem is now known to be de-
cidable, the best known upper bound1 to date is exponential space [13]. To the
best of our knowledge, nontrivial lower bounds are known only for the case where
the input is specified succinctly2, as an NFA.

Here we settle the complexity of the star height problem for the class of
bideterministic languages, a certain subclass of regular languages: Namely, a
regular language is bideterministic if it can be accepted by a finite automaton
that is both forward and backwards deterministic, and has a single start and a
single accepting state. The following theorem is due to McNaughton [14]:

Theorem 12 (McNaughton’s Theorem). Let L be a bideterministic lan-
guage, and let A be the minimal trim (i.e., without a dead state) DFA accept-
ing L. Then h(L) = r(A).

Using this theorem and the NP-completeness result for cycle rank, we can prove:

Theorem 13. The star height problem for bideterministic languages is NP-
complete.

Proof. Membership in NP is immediate from Theorem 12 and Theorem 8.
To establish NP-hardness, we reduce from the problem of determining for a

strongly connected digraph G = (E, V ) and an integer k whether the cycle rank
1 The noted upper bound holds more generally for a given NFA if also an NFA accept-
ing the complement language is provided as part of the input. Note that in the case
of a given NFA, the size of complemented NFA can be exponential in the size of the
original NFA, thus potentially blowing up the ”actual” size of the problem instance.

2 Determining the star height of a language specified as an NFA is PSPACE-hard [12];
but, as illustrated in [12], a large multitude of natural questions about the language
accepted by a given NFA is that hard, but often these questions become computa-
tionally easy if a DFA is given. Admittedly, such hardness results render more service
to understanding succinctness of NFAs over DFAs than to understanding the nature
of the actual problem under consideration. This is why here we deliberately stick to
the convention to specify the input as a DFA.



is at most k, which is NP-hard by Theorem 8. For a vertex v in V , let L(G, v)
denote the language {w ∈ E∗ | w walk starting and ending in v }. A determinis-
tic finite automaton A accepting L(G, v) has V as set of states and for each edge
(x, y) ∈ E a transition labeled (x, y) from x to y. The start and only accepting
state is v. It is readily verified that A accepts L(G, v), is bideterministic, and
that A is the minimal trim DFA for this language. By construction, r(A) = r(G),
and r(A) = h(L) by Theorem 12. ut

References

1. J. Bárat. Directed Path-width and Monotonicity in Digraph Searching. Graphs
and Combinatorics 22(2): 161–172, 2006.

2. B. Yang and Y. Cao. Digraph searching, directed vertex separation and directed
pathwidth. Discrete Applied Mathematics 156(10): 1822–1837, 2008.

3. D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and parity
games. In STACS 2006, LNCS 3884, pp. 524–536. Springer, 2006.

4. H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms 18(2): 238–255, 1995.

5. R. Diestel. Graph Theory. 3rd edition, Springer, 2005.
6. L. C. Eggan. Transition graphs and the star height of regular events. Michigan

Mathematical Journal, 10(4):385–397, 1963.
7. S. Eisenstat and J. W. H. Liu. The theory of elimination trees for sparse unsymmet-

ric matrices. SIAM Journal on Matrix Analysis and Applications, 26(3):686-705,
2005.

8. W. Evans, P. Hunter and M. A. Safari, D-Width and cops and robbers, 2007,
preprint.

9. W. Gelade. Succinctness of regular expressions with interleaving, intersection and
counting. In MFCS 2008, LNCS 5162, pp. 363–374. Springer, 2008.

10. H. Gruber. On the D-width of directed graphs. Manuscript, 2008.
11. H. Gruber and M. Holzer. Finite automata, digraph connectivity, and regular

expression size. In ICALP 2008, LNCS 5126, pp. 39–50. Springer, 2008.
12. H. B. Hunt III and D. J. Rosenkrantz. Computational parallels between the regular

and context-Free languages. SIAM Journal on Computing, 7(1):99–114, 1978
13. D. Kirsten. Desert automata V. On the complexity of the relative inclusion star

height problem. Manuscript, 2007.
14. R. McNaughton. The loop complexity of pure-group events. Information and

Control, 11(1/2):167–176, 1967.
15. R. McNaughton. The loop complexity of regular events. Information Sciences

1(3):305–328, 1969.
16. J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homo-

morphism bounds. European Journal of Combinatorics, 27(6):1022–1041, 2006.
17. J. Obdržálek. Dag-width: Connectivity measure for directed graphs. In SODA

2006, pp. 814–821. ACM Press, 2006.
18. M. A. Safari. D-Width: A more natural measure for directed tree width. In MFCS

2005, LNCS 3618, pp. 745–756. Springer, 2005.
19. R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans-

actions on Mathematical Software, 8(3):256–276, 1982


