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Abstract. A not so well-known result in formal language theory is the Higman-Haines sets for
any language are regular [11, Theorem 4.4]. It is easily seenthigse setsannotbe effectively
computed in general. The Higman-Haines sets are the laeguafgall scattered subwords of a
given language as well as the sets of all words that contaimesword of a given language as a
scattered subword. Recently, the exact level of unsoltgtmf Higman-Haines sets was studied
in [8]. Here we focus on language families whose Higman-Esigets are effectively constructible.
In particular, we study the size of descriptions of Higmaairi¢s sets for the lower classes of the
Chomsky hierarchy, namely for the family of regular, lineantext-free, and context-free languages.
We prove upper and lower bounds on the size of descriptionikesfe sets for general and unary
languages.

*This paper is completely revised and expanded version of a papenpedsat théth International Conference on Machines,
Computations and Universality (MCU) held in ®ans, France, September 10-13, 2007.
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1. Introduction

Higman's Lemma [11] and its generalization, namely Kruskal's Tree Thediel) can be used to
show that certain rewriting systems terminate. Nevertheless, the result@Hig not so well known
and was frequently rediscovered in the literature, see, e.g., [9, 16, Although Higman's result
appears to be only of theoretical interest, it has some nice applicationsnralféanguage theory.

It seems that one of the first applications has been given by Haines ifhfhrem 3], where it is
shown that the set of all scattered subwords, that isHilgenan-Haines seDOwWN(L) = {v € A* |
there existsv € L such thaty < w }, and the set of all words that contain some word of a given lan-
guage, that is, theligman-Haines setUpr(L) = {v € A* | there existsv € L such thatv < v}, are
both regular foranylanguagel. C A*. Here,< refers to the scattered subword relation. As pointed out
in [9], this is an exceptional property, which is quite unexpected. Fuapelications and generalizations
of Higman'’s result can be found in, e.g., [5, 6, 13, 16].

It is worth mentioning that BwN(L) and Up(L) cannot be obtained constructively in general. This
is obvious, becausg is empty if and only if BDbwN(L) and Up(L) are empty, but the question whether
or not a language is empty is undecidable for recursively enumerabledgag and decidable for reg-
ular ones. Thus, as expected, for the family of recursively enumelatjpiages the Higman-Haines
sets are not constructible, while it is not hard to see that for regular éegithe construction becomes
effective. But where exactly is the borderline between language familttsyan-constructive and con-
structive Higman-Haines sets? One might expect that, e.g., the family of tdregedanguages has
non-constructive Higman-Haines sets, but surprisingly this is not theg aa$as been shown in [17]. On
the other hand, recently it was shown in [8] that, in general, the family of€@hRosser languages has
non-constructive Higman-Haines sets. This language family lies in betweeeghlar languages and
the growing context-sensitive languages, but is incomparable to the fantibntéxt-free languages [1].
Moreover, in [8] the exact level of unsolvability of the Higman-Haines &@tsertain language families
was studied. Further, recursion theoretic results on the down-settafrcéanguage families can be
found in the recent paper [4]. Thus, the non-constructive side ahdigHaines sets is well studied. But
besides the results in [17] there is only little known about constructibility isderesept for some results
about regular languages accepted by nondeterministic finite automata ie &rte is true for descrip-
tional complexity issues. This is the starting point of our investigations on HigHzanes sets whose
sizes of description are effectively computable. In particular we contiégproblem of computing the
Higman-Haines sets induced by the families of regular, context-free, agat laontext-free languages.
For the size of the Higman-Haines sets generated by regular languazgrsamgl lower bounds are pre-
sented. That is, we prove that an exponential blow-up is sufficienhaoessary in the worst case for a
deterministic finite automaton to accept the Higman-Haines seti{ ) or UP(L) generated by some
language that is represented by another deterministic finite automaton. Télis cootrasts the result
about nondeterministic finite automata where a matching upper and lower bbtirelsame size as the
given automaton has been derived in [8]. Furthermore, we investigadkefoeiptional complexity of the
Higman-Haines sets when the underlying device is a context-free or linataxt-free grammar, where
we obtain results on general and unary languages. We obtain noh-tgpgar and lower bounds for
these problems.

The paper is organized as follows. The next section contains prelimiarigsasics about Higman-
Haines sets. In Section 3 we first summarize the known upper and lowad&dor nondeterministic
finite automata [8]. Then we study the sizes of description of the Higman-Blartefor regular lan-
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guages in terms of deterministic finite automata. The effect of changing thee&sure to the number
of transitions of the nondeterministic finite automata is briefly discussed. Fombher Higman-Haines
sets induced by context-free and linear context-free languages asigated. In most cases we ob-
tain matching upper and lower bounds in the order of magnitude. Finally, n&ugte with some open
problems.

2. Preliminaries

We denote the set afon-negative integerby N. The powersetof a setS is denoted by2°. For an
alphabetA, let A™ be the set of non-empty words over A. If the empty word\ is included, then we
use the notationl*. For thelengthof w we write |w|. For thenumber of occurrencesf a symbola in w
we use the notatiohw|,. Set inclusion is denoted by, and strict set inclusion by. Letv,w € A*
be words over alphabet. We writev < w if there are words, vs, . . ., v andwy, we, . .., wgy1, for
somek > 1,v; € A*, w; € A%, such that = vjvs ... v andw = wyviwavs . . . WEVEWEL1. IN case of
v < w we say thav is a scattered subword af. Let L be a language over alphab&t Then

DOWN(L) = {wve A" |thereexistsv € L suchthat < w}

and
UP(L) = {wve A" |thereexistsv € L such thatw < v}

are theHigman-Haines setgenerated by..
The next theorem is the surprising result of Haines. It has been shbaut half a century ago.
Actually, it is a corollary of Higman’s work, but let us state it as a theorem.

Theorem 2.1. ([9, 11]) Let L be an arbitrary language. Then botlo®Wn(L) and Up(L) are regular.

In order to talk about the economy of descriptions we first have to defira i meant by the size
of automata and grammars. In general, we are interested to measure thefahgtbtring that defines
an automaton or grammar. In particular, we sometimes use more convenieoranmun Size measures,
if there is a recursive upper bound for the length of the defining stripgmident on the chosen size
measure. For example, for context-free gramnidrshe sizg M | equals the total number of occurrences
of terminal and non-terminal symbols in the productions. For deterministic andaterministic finite
automatal/, the size M| equals the product of the number of states and the number of input symbols.

3. Effective Higman-Haines Set Sizes

This section is three-fold. First we turn to the family of regular languagestlaen to the family of
context-free languages, whose Higman-Haines sets can effectivebnisegucted [17]. Finally we con-
sider the special case of unary languages. In these subsectiong weeaested in the constructions
itself as well as in the sizes of description of the Higman-Haines sets.

3.1. Regular Languages

Let M = (5, A,9J,so, F') be a nondeterministic finite automat9NFA), where S is the finite set of
internal states A is the finite set ofinput symbolssy € S is theinitial state, ¥ C S is the set of
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accepting statesands : S x (AU {\}) — 2° is thepartial transition function An NFA is deterministic
(DFA) ifand only if |6(s,a)| < 1,1d(s,A)| < 1,and|d(s,a)| =1 < [d(s,\)| =0, forall s € S and
a € A.

Without loss of generality, we assume that the finite automata are aledysed This means that
there are no unreachable states and that from any state an accepticgustagereached.

Concerning the size of an NFA accepting®N(L(M)) or Up(L(M)) of a given NFA language,
one finds the following situation, which was proven in [8].

Lemma 3.1. Let M be an NFA of sizex > 1. Then sizen is sufficient and necessary in the worst case
for an NFA M’ to accept @WN(L(M)) or UP(L(M)). The NFAM' can effectively be constructed.

The tight bounds shown for the sizes are not too complicated. So, thahat@stion for bounds
based on different reasonable measures raises immediately. It turt@btlte situation is different, if
the number of defined transitions, i.e., the number of edges in the transitjgm ggaised to measure the
size of NFAs. Recall the construction of the NFA for the languagevid(L(M)). At first the transition
functiond of M is replaced by, whered; provides all transitions of and, in addition \-transitions
whenever provides a nonk-transition:

Vse Sae A:di(s,a)=0(s,a) and Vse S :d(s,\)=0d(s,A\)U U(S(s,a).
acA

So, given an input from DOWN(L(M)) such thaty < w andw € L(M), the new NFA simulated/
onw in such a way that it guesses the missing input symbols and performs teemamding transitions
of M asA-transitions. Moreover, since the NFA is still reduced, there is an accepipath from every
state. Therefore, we can define any state to be an accepting state.vbtorge safely may delete all
A-transitions from a state to itself. It is easy to see that the new NFA acceptanL(M)).

A closer look reveals that the size can be optimized. If there appearsesyd, then there appears
a cycle of \-transitions in the new NFA. In this case all states on the cycle can be mergedna
state which allows all outgoing transitions of the merged states and gets all inctnamsitions to the
merged states. On the other hand, if there appears an accepting statd aittyming transitions, the
A-transitions to that state can be omitted, since all states are accepting oe@sc€pted language is not
changed by the optimizations, but regardless of whether there appsanle ar a state without outgoing
transitions, at least one transition is omitted.

The next lemma gives an upper bound due to the above construction apdritization.

Lemma 3.2. For any NFAM with n > 1 transitions one can effectively construct an NFA accepting
DowN(L(M)) with at most2n — 1 transitions.

Proof:

We consider the above construction of an NFA accepting the languagenX.(M)). The first con-
struction step inserts &transition for each existing transition. So, the number of transitions is isedea
from n to 2n. The optimizations reduce this number at least by one. O

For the special case of finite unary languages with endmarker, that ggidgas of the forni.{b},
whereL C {a}* is finite, the upper bound is much better and, in particular, is shown to be tight.
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Theorem 3.1. Let M be an NFA withn > 1 transitionsaccepting a finite unary language with end-
marker. Them + [log(n)] transitionsare sufficient and necessary in the worst case for an M?Ao
accept DWN(L(M)). The NFAM' can effectively be constructed.

Proof:
In order to prove the lower bound we use the finite langudges- {a™~'b} with n > 1 as witnesses.
Clearly, L,, is accepted by some. (4 1)-state NFAM whose transition function definestransitions. It
remains to be shown that any NBA&’ which accepts BwWN(L,,) needs at least + [log(n)]| transitions.
Since DowN(L,,) is finite, automaton/’ has no cycles. We consider accepting computations for the
scattered subwordg’b, for 0 < i < n — 1. For each of these subwords, automafidnperforms at
leasti + 1 different transitions, sa#,, t3, ..., t! . Lets; be the state in which/’ reads the last lettér
from its input.

Now we will show that for each two scattered subwoséfsanda’/b with i < j automaton)/’ has

to use at least one transition which is nottint}, .../, in order to accept’b. We consider two
cases: (1) If the states ands; are equal, then on input prefi¥ automaton)/’ must have used at
least one transition, saj; not appearing im/, ¢, . .. ,t7. Otherwise, there exists a cycletint), ... .

Moreover, transitiort’ is not equal totg 41, Since the latter reads an input symbol(2) If the states;;
ands; are different, we denote the transition frawhich reads the last input lettéiby ¢’ and observe
thatt’ is different fromtjﬁle since the latter is defined for statg# s;. Furthermore, it is different from
t],t,..., since the latter do not read the input symholn both cases is a new transition.
Altogether,M’ performs at least different transitions to accept'—'b. It is easy to see that, in addi-
tion, there are at leastog(n)| more transitions in order to meet the shown condition, i.e., to distinguish
between the: scattered subwordgb, for0 <i <n — 1.
In order to prove the upper bound, we turn to the constructial/ bfvith n + [log(n)] transitions.
Let sg, s1,...,5n_1, Sn, bE the sequence of states passed through during an accepting compuoriation
inputa™~1b. This givesn — 1 a-transitions and on&-transition. Now we add-transitions froms,:_;
to s9i+1_1, forall 0 < ¢ < |log(n)] — 1. Thatis, fromsg to s, from s; to s3, from s3 to s7, and so
on. If n — 1 is not of the form2* — 1, we continue the path by adding anothetransition tos,, ;.
Altogether, this giveglog(n)] transitions in addition. Finally, we distinguish, s,—1, ands,, to be
accepting states. It is easy to see thHtaccepts @DWN(L;,). O

In the remainder of this subsection we consider DFAs. First observéhhabnstructions presented
so far heavily rely on nondeterminism. Even when starting with a DFA, thdtiegautomata accepting
DoOwWN(L(M)) or Up(L(M)) are nondeterministic in general. So, applying Lemma 3.1 and the well-
known powerset construction gives an upper bound on the size afiavatent DFA.

Coroallary 3.1. Forany DFAM of sizen > 1, one can effectively construct a DFA accepting(U(M))
or DOWN(L(M)) whose size is at mo&t'.

For the next two theorems we need some more notations.L L&t A* be an arbitrary language.
Then theMyhill-Nerodeequivalence relatioes, is defined as follows: Fou, v € A* letu =1, v if and
only if uw € L <= ww € L, forallw € A*. Itis well known that the number of states of the
minimal deterministic finite automaton accepting the language A* equals the cardinality of the set
of equivalence classes induced by the Myhill-Nerode relation.
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We continue our investigations by proving a non-trivial lower bound féABaccepting the language
DowN(L(M)), for some given DFAM. The lower bound is quite close to the upper bound of the
previous corollary.

az, a3 az, a3 az, az az,az

D
QD

ay,az a1,as3

.0

Figure 1. A DFA of sizé; - 16 accepting wN(L3)—the non-accepting sink state is not depicted.

as

(s (D

Theorem 3.2. For everyn > 1, there exists a languade, over an(n + 2)-letter alphabet accepted by
a DFA of size(n + 2)(n + 1), such that any DFA acceptingdn(L,,) is at least of sizg®(*10s),

Proof:
Let A = {aj,az,...,a,} and#,$ ¢ A. Consider the languagk,, C (A U {#,$})* defined as

L, :{#j$w |we A", j>0,i=jmodn,|wly,,K =n}.

A DFA accepting languagé s is depicted in Figure 1. It is easy to see that any DFA accepling
needsn + 1 states for each letter; to count up ton. Moreover, for the#-prefix n states are used, and
finally one non-accepting sink state is needed. This resuligiind- 1) + n + 1 states, which gives size
(n+2)(n?+2n+1) = (n+ 2)(n + 1)2. Itis not hard to verify that the DFA is minimal.

It remains to be shown that the minimal DFA acceptingiIN(L,,) has at leastn 4 2)" + 1 states,
where

DOWN(L,) = {#/aw | w € A*,j > 0,a € {$,\} and \/ |wl,, < n}.
i=1

First we consider any two different words of the form ;, ;. = $a'al? ... alr with 0 <i; <n 41
and1 < j < n, and show that they are non-equivalent with respect to the Myhill-Nerethtion
=DowN(L,)- Letwi, 4., andw; ;. be two different words. Thet), # iy, for somel < k < n.
Without loss of generality we assume thgt< ¢;. Then the word

- n+l n+l n+l (n+l)—=i) pyq n+1
Wiy ig,egin ~ A1 Ay oo Qg1 Oy gy - -+ Oy

belongs to wWN(L,, ), because letter; appears at most times. On the other hand,

n+l ntl ntl () =i niq n+1
’UJZ‘/DZ‘IQW.’Z'{’I ) s Q10 ak+1 e Qy
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does not belong to BwN(L,,) since all letters;, for1 < j < n, appear at least+1 times. Hence, there
are(n+ 2)" different equivalence classes induced by the wargs, .. ;,. Moreover, the empty word

is non-equivalent to all the other words. This is seen by concatenatingattks with$. Therefore, we
have obtained at lea&t +2)™ 41 equivalence classes. In fact, one can construct a DFA with this number
of states accepting ®wN(L, ). Therefore22("1°2) is a lower bound on the size of any DFA accepting
DOWN(Ly,). 0

Now we turn to deduce a lower bound on the size of any DFA acceptw(d. () )), for a given
DFA M.

Theorem 3.3. For everyn > 1, there exists a languadeg, over an(n + 2)-letter alphabet accepted by
a DFA of size(n + 2)(n + 1), such that any DFA acceptingrfL,,) is at least of siz@®*("1log™),

Proof:

Again, we use the languadsg, from the proof of Theorem 3.2. So, we already know that there is a DFA
of size(n+2)(n+1)? acceptingL,,. The description of the languageeU.,,) is more involved compared
with DowN(L,,), since WP(L,,) has the following representation as a finite union of languages:

UP(L,) = | P;$S;,

7=1
where forl < j < n,
Pj={we (AU{S)" ||wlp=j—1} and P ={we (AU{$})"||wlz>n—1},
and forl < j <n,

i
Sj={we (AU {# 8N |/ lwle, 2 n}.

=1

In order to obtain the‘2("!°2™) Jower bound on the size of any DFA accepting(ld,,), it suffices to show
that Up(L,,) induces at leasi” equivalence classes with respect to the Myhill-Nerode relatig ..,
Let
Wiy ig,eoin = #9037 03 ... ayy

with 0 < i; < nandl < j < n. Note thatw;, ;,,. 4, -aZ’i’f belongs to the language,$S,,. Any two
different wordsw;, i, ...i,, andwi/l’i/2 _____ i+ do not belong to the same equivalence class. Since both words
are different, we have, # i}, for somel < k < n. Assume without loss of generality thiat < 7.
Then it is easy to see that

n—i

Wiy jig,..in " O E ZUP(L,) but wy ;. -aZ_i;“ € UP(L,).

i
17227"'7 n

n—1, . n—i’
In the former case/!" | |wi, j,,...in - @, *la, = nis false, wherea¥§/;_, [w;y i o -a, *lo, > 1

! ! N
)8y 5ensipy

becomes true in the latter case, since the word under consideration cextatlgn symbolsa;. There-
fore, any DFA accepting the languag®,,) must have at least” states. O
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In fact, with a more careful analysis one obtains that any DFA acceptrid.}) must have at least
n"+n""'+.. . +n+1 states. To this end, one shows that the langu&fes;, for 1 < i < n, inducen’
pairwise different equivalence classes.

Finally, it is worth to mention that the lower bounds of the previous two theordigtglg improve
when the number of states is used to measure the size of DFAs. The neenth@ommarizes the lower
bounds.

Theorem 3.4. For everyn > 1, there exists a languads, over an(n + 2)-letter alphabet accepted by a
DFA with (n + 1)? states such thap®("l°en) statesare necessary for any DFA accepting®N(L,,).
A similar statement is valid for B(L,,).

After the conference version of this paper appeared, the preciseenwhbequired states for both
DownN(L) and Ur(L) was determined in [15]. The exact bounds are given as functions iruthéer
of states, irrespective of alphabet size. The witness languages gee ddphabets than the languages
used in this paper; therefore the mentioned work also discusses thioétigzhabet size on the required
number of states and establishes roughly exponential lower boundaksipliabets of constant size.
Part of these results improve the lower bounds obtained here, se@fthils.

3.2. Context-Freeand Linear Context-Free Languages

In this subsection we are interested in the size of NFAs accepting the HigmaasHzets of languages
generated by context-free and linear context-free grammars. Recailvéhase the total number of
occurrences of terminal and nonterminal symbols in the productions asie&sure for grammars. Let
G = (N, T, P, S) be a context-free grammar, whekeis the finite set ohonterminalsT is the finite set
of terminals P C N x (N UT)* is the finite set of productions, arfti€ N is theaxiom A context-
free grammaG = (N, T, P, S) is linear context freef P C N x T*(N U {\})T™. Without loss of
generality, we assume that the context-free grammars are atedysed which means that there are no
unreachable or unproductive nonterminals.

As in the previous subsection we first show how to construct an NFA fowR(L(G)). In order
to simplify the analysis we assume that the right hand-sides of the produatiemescribed by NFAs
with input alphabetV U T'. We refer to such a grammar as extendedlinear) context-free grammar.
Note, that one can assume that for each extended context-free grareneastixactly one NFA for each
nonterminal appearing at a right-hand side. The following theorem is detktanalysis of the inductive
construction presented in [17].

Theorem 35. Let G be a context-free grammar of size> 1. Then sizeD(n - 2V2"198) s sufficient
for an NFA M’ to accept DWN(L(G)). The NFAM’ can effectively be constructed.

Proof:

First, the context-free grammat = (N, T, P, S) is transformed into an extended context-free gram-
mar G'—the details are left to the reader. Second, we observe that eachmiatieappears at the
left-hand-side of at least one production, and at least one nonterisneairitten by some terminal sym-
bol. Therefore, the number of nonterminals is at mdst. Next, we inductively proceed as in [17]. For
a nonterminald € N we set the alphabéty = (IV \ {A}) U T, and define the extended context-free
grammaiGy = ({A},Ta, P4, A)withPy ={A— M | (A— M) € P},whereM in(A— M) e P
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refers to the NFA of the right hand-side of the production. Furthel.get L(G 4). Observe tha&i 4
is an extended context-free grammar with oahenonterminal, and thus one can obtain an NFH&
describing DWN(L(G 4)) over the alphabef’y by a subroutine to be detailed below. Then the induc-
tion is as follows: LetGy = G’. If A is not the axiomS of G, we can replace eachA-transition
occurring in the right-hand-side automata of nésproductions ofG( with a copy of M 4 to obtain an
extended gramma®; having one nonterminal less th&#, and DOWN(L(G1)) = DOWN(L(Gy)).
This construction step can be iterated for at mdst — 1 times, yielding extended context-free gram-
marsGs, Gs, ..., G|z )1, satisfying DDWN(L(G;)) = DOWN(L(Git1)), for 0 < @ < [3], where
in the latter grammaGL%J_l the only remaining nonterminal is the axiathof G. Finally, we apply
the mentioned subroutine to construct the NFA which results in the finite automaton accepting the
language DWN(L(G)).

It remains to describe the above mentioned subroutine and deduce arbappd on the size of the
automatonM’. The subroutine works for an extended gramifar = ({A}, T4, {A — M}, A) with
only onenonterminal. We distinguish two cases:

1. The production set given k(M) is linear, i.e.,L(M) C T3 {A, A\}T7, or
2. the production set given by(M) is nonlinear.

In the first case, we construct an NB4&y with L(Mrp) = L(M) N T, which is obtained by removing
all A-transitions fromM. Similarly, we build NFAsSM p and Mg for the quotients

L(Mp) = {xe€T)|xzAzec L(M)forsomez € (T4 U{A})*} and
L(Ms) = {zeT)|zAz € L(M)forsomezr € (T4 U{A})*}.

Then it is straightforward to construct an NEA 4 having a single initial state and a single accepting
state withL(M4) = DOWN(L(Mp)* - L(Mr) - L(Mg)*) = DOWN(L(G 4)). The number of non-
transitions, inM 4 is at most three times that éf.

In the second case, i.€.(M) is nonlinear, we construct automatép, My, Mg, andM;, where
the former three NFAs are as in the previous case,dp@ccepts the quotient

L(M;)={yeT)|zAyAz € L(M) for somez,z € (T4 U{A})*" }.

Again, it is not hard to construct an NF® 4 with a single initial and a single accepting state accepting
L(Ma) = DOWN((L(Mp)UL(Mp)UL(M;)U L(Mg))*) = DOWN(L(G 4)) with no more than four
times as many non-transitions as\/.

The upper bound on the size of an NFA acceptingwN(L(G)) is deduced as follows: For an
extended context-free grammét, let |G|; denote the sum of the number of nartransitions in the
right-hand-side automata in the productiongbfWith this notation we obtain the recurrence

IGrlt <4-(|Gr_1]e)?, forl <k< 2],

describing the substitution step in th#h iteration of the construction aF from Gj_,. Taking loga-
rithms and settindd;, = log |G|+, we obtain a linear recurrendé, < 2 - H;_; + 2. Solving the linear
recurrence, we obtain the inequalitf, < 2* - Hy + 28! — 2. Since|Gy|; < n, we have

Hp oy <237 Hy42li) —2 <ol3] 71 ogn 1 203] —2.

n
2
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When replacing the axiom iGL%J,l in the final step, the number of nortransitions is increased at
most by a factor of four, which results in

’Glgj ’t < 22\-%J71-logn+2L%J < 22L%J71-logn+2\-%J71-logn < 22L%J logn < 2\/27L10g717

for all n > 4. It remains to be shown that for every NFA withnon-A-transitions, there is an equivalent
NFA with at mostO(n) states. An easy construction can be used to remove all non-initial staiag hav
neither ingoing nor outgoing alphabetical transitions after adding some extaasitions where neces-
sary. By a simple counting argument, we find that the latter automaton has ammp4dtstates. Hence,
this shows that the NFA/’ accepting WN(L(G)) has a size of at mogd(n - 2V2" log), O

For the lower bounds we obtain:

Theorem 3.6. For everyn > 1, there is a languagg,, over a unary alphabet generated by a context-
free grammar of siz8n + 2, such that siz€*(" is necessary for any NFA accepting@N(L(G)) or
UP(L(G)).

Proof:

For everyn > 1, consider the finite unary languages = {a?"} generated by the context-free grammar

G = ({A1,A4,...,Apt1},{a}, P, A;) with the productionsd; — A; 41441, for1 < i < n, and

Any1 — a. Obviously, grammaé' has size3n + 2. The worda?" is the longest word in DWN(L(G))

and the shortest word inRJL(G)). In both cases, any finite automaton accepting the language takes at
least as many states as the length of the word. So, it takes at least"lesigtes and, thus, has at least
size2™. O

Now we turn our attention to the construction of an NFA acceptim/lJG)), for a context-free
grammarG. To this end, we call a word: € L minimalin L if and only if there is no different € L
with v < w. The set of minimal elements ihis called aasis of the languaggp(L). Observe that any
shortest word inl is minimal in L, and any such word must therefore be part of the basis. In fact, Hig-
man’s Lemma [11] says that for any arbitrary languégéere exists a natural numberwhich depends
only on L, such that B(L) = |J,<;<, UP({w;}), for some wordsw; € L with 1 < ¢ <n. Some-
times the result is called tHaite basis propertyFor the construction of an NFA accepting(G)),
whered is a context-free grammar with terminal alphaldetve proceed as follows:

1. Determine the basiB C A* of the language B(L(G)) with the algorithm presented in [17].

2. Construct an NFAV accepting languag®, and apply the construction given in the previous
subsection to obtain an NFA!" accepting W(B), which equals the languagerL(G)) by the
finite basis property.

The first step basically consists of inductively computiBgstarting fromB, = (). LanguageB;, is
obtained by extending; by a shortest wora in L(G) \ UP(B;), i.e., settingB;+1 = B; U {w}. This
process is repeated as long(d8G) \ UP(B;)) # 0. If this condition is met, the s&B equals the last
extendedB;. Since context-free languages are closed under set differenceegittar sets, the sd?
can effectively be constructed. Taking this approach we would endithpawdouble exponential upper
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bound for the NFA accepting the up-set of a context-free languageerttheless, in the next theorem we
show that we can do much better.

In the proof to come we require that the context-free grammar 2srinrmalform, i.e., the produc-
tions are of the fornP C N x (N2UT?2UNTUTNUNUTU{\}). This is no restriction, since in [10]
it was shown that for a given context-free grammar of sizme can effectively construct an equivalent
context-free grammar i2-normalform of size at most - n.

Theorem 3.7. Let G be a context-free grammar of size> 1. Then size2°(™ is sufficient for an
NFA M to accept WB(L(G)). The NFAM can effectively be constructed.

Proof:

LetG = (N, T, P, S) be the context-free grammar. Without loss of generality, we may assumé'that
is in 2-normalform. If L(G) is empty, the statement is obviously true. Thus, assifde) + () for the
rest of the proof. LeB3 denote the basis df = L(G). Then we argue as follows: Essentially the same
argument as the one used in the pumping lemma shows that each worgl admits a derivation tree
that isacyclig in the sense that on each path from the root, each nonterminal carebocost once—in
fact, this might not be true for all such trees, since 2hwormalform ofG allows cyclic chains of unit
productions. Otherwise we could decompese uvwzy such that its proper subwordoy would also

be in L, contradicting: € B. In particular, word: has a derivation tree whefeoccurs only at the root.
Now let G’ be the context-free grammar obtained fréhiby removing all rules in

Ppss={A—a|A— ac PandS appears in },

thatis,G' = (N,T, P\ Pus,s,5). By the above given argument, this does not change the basis of the
generated language, i.e., both languaBgs) and L(G’) have the same basks.
Now define
Ppss={S—a|(S—a)ecP}

and for each symbo € N U T that appears at the right-hand-side of a ruleHp, s define the
context-free languagé 4 to be generated by the context-free gramméay = (N, T, P4, A), where
Py = P\ (Phss U Prpss), if A e N,andLy = {A}, if A € T. It should be clear that the basis
of L(G"), or equivalently ofL, is obtained by computing the basis of

U  Ix-Ly, 1)

(S—=XY)EPys g
X, YENUTU{A}

whereLx = {A}, if X = \. Clearly, the basis of x - Ly is a subset of the basis &fy concatenated
with the basis ofLy. Since the number of productions used to genefateor Ly by a context-free
grammar has decreased by at lgd3t, s/, this gives a terminating recursive algorithm for computing
the basisB of L from the context-free grammaér.

Next we show how to construct an NFA having at mose!”’! + 1 states accepting the badis
of L, using the above described recursive algorithm. The prove is donalbgtioan on the number of
productions of5. Letn = | P|. In the base case = 1, the language generated @ycontains at most one
word of length at mos2, and thus, the statement clearly holds in this case. To do the induction step, we
use the fact that the basis computatior.diased on Equation (1) and the comment given afterwards can
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be implemented using standard NFA constructions for concatenation andairiioite languages [12],
giving
nsqL) < > (nsdLx)+nsdLy) —1) —2(|Pss| — 1)

(S—=XY)EP 5
X, YENUTU{}

as an upper bound on the number of stated/ofHere ns¢L) denotes the number of states of an NFA
accepting the basis df. Since each languadgey and Ly can be generated by a context-free grammar
with at mostmax{1, n—r} productions, where = | P;,s g|, for » < n we obtain by induction hypothesis

nsqL) <r-(2-(2" " +1)—1)—2(r—1)=7r-2"".2" —r 4 2.

Forr > 1, the right-hand-side is at mag&t + 1. It remains to prove the statement foe= n. In this case,
the only productions i’ are that ofP;,s 5. But then it is easy to construct an NFA with-2 < 2" 41
states accepting the badisof L. This completes the proof and shows that the number of statkésisf
at mos2!”’l + 1. Thus, thesizeof M in terms of the size of G is bounded above by (2" + 1), which
is of order20(™ as stated. O

In the remainder of this section we concentrate on linear context-freedgaeguAs in the previous
proof, we make use of the notion of acyclic derivations, that is, on thefpatithe root to the leaves,
each nonterminal can occur at most once. For derivations inducedday lbontext-free grammars this
implies that no nonterminal occurs more than once in the derivation. Noteubatifethe sequences
of nonterminals derived in acyclic derivations are equal, the derivatignbealifferent. The following
lemma gives an upper bound on the cardinality of acyclic derivations ofrlowdext-free grammars.

Lemma3.3. LetG = (N, T, P, S) be a linear context-free grammar with productions. Then
A(G)] < 2m7H,
whereA(G) denotes the set of all acyclic derivatiofis=* w in G, for w € T*.

Proof:

Each production of a linear context-free grammar may appear at mostroacy acyclic derivation.
Moreover, the set of applied productions is naturally ordered by théenomals on the right-hand
and left-hand-sides. So, each acyclic derivation corresponds torderéd) subset aP, that contains
exactly one production with the axiom at its left-hand-side. In total we obtamaost2™ ! different
acyclic derivations. O

Now we are prepared for our first result on linear context-free grammima

Theorem 3.8. Let G be a linear context-free grammar of size> 1. Then size2°(" is sufficient for
an NFA M to accept DWN(L(G)). The NFAM can effectively be constructed.

Proof:

Let G = (N, T, P, A1) be a linear context-free grammar. The basic idea for the constructidn isf

to inspect the derivation trees 6fand to modify the underlying grammar such that any self-embedding
derivation of the formd =* x Az, forsomeA € N andz, z € T*, is replaced by a derivatioA =* x A
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andA =* Az, while the respective generated languages have the same down-satserlvords, the
derivation that produces the “coupled” terminal wordand z is made “uncoupled” by a right-linear
and a left-linear derivation. In order to make the construction work, @setd take care about these
self-embedded derivation parts in an appropriate manner. For a foeaagent of the construction we
need some notation.

Let S = A; =* w be a derivation ofv € T™*. Then the inner nodes of the derivation tree form a
pathp = A1 A, ... A, for somek > 1. We can group the inner nodes as follows: We call a subpath
of p that represents a self-embedded derivation with nonterminaé., which begins and ends with the
same nonterminall, an A-block—trivial derivations of the formAd =* A also count as blocks. Now
we collapse blocks in order to obtain an acyclic derivation as follows. Wigider the patlp from left
to right. If there is a nonterminal, say;, that appears at least twice, then the leftmost and rightmost
occurrence defines a block that is collapsed. This means, the card#sgaubpath from the first; to
the lastA; is deleted. The initial subpath from the axiom to the fidstis kept, and the new derivation
continues as from the last;. This process is repeated until each nonterminal appears at most once
(see Figure 2). In this way, each derivation corresponds to an acy®iandvice versa

A Ay

Figure 2. Collapsing the path = A; Ay A, A3 As A7 A3 A5 A3 Ag yields the pathd; A4 A3 A7 A3 Ag that corre-
sponds to an acyclic derivation. Blocks are gray shadedteidgubderivations are drawn by a curled line. Single
step subderivations are grouped together. They are ddpidige and their subderivations are drawn by a solid
line.

Now consider th@cyclicderivationD : S = A; =* w of w € T* induced by the linear context-free
rulesA; — x;A;112; With z;, z; € T* andA; € N, for1l <i < k, andA; — y with y € T*, for some
k < |N|. For each nonterminal € N we consider the quotients

L(Myp) = {zeT*|A="2zAzforsomez € T" } and
L(Mys

~— —

{zeT" | A=" zAzforsomezr € T" }.

By deletingz from any productioldd — zBz, for x,z € T* and B € N, deletingAz from any
productionA — zAz, for x,z € T*, and erasing each productioh — y, for y € T* we obtain a
rightlinear grammar foL (M4 p). Similarly, we construct a leftlinear grammar tb(M 4 s). Theniit is
straightforward to construct NFAY 4 p andM 4 s acceptingL (M4 p) andL(M 4 s) that have a single
initial state and a single accepting state, respectively. Both NFAs can baucted such that they have
at most| N| < n states.

For the acyclic derivatio® from .4(G) we obtain an NFAV/, accepting the languadg D) which
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is inductively defined as follows: Fdr<i < k — 1 let

L(D;) = L(Ma,p)" -{xi}  L(Dit1) - {2} - L(Ma, )"
and
L(Dy) = L(Ma,p)" -{y} L(Ma,s)"

Then by our previous investigations one observes that

DOWN(L(G)) = U DOWN(L(Mp)),
DeA(G)

since the down-set of the set of all partial derivations correspordiag A-block equals the language
DOWN(L(MA’p)* CA- L(MA’S)*).

By using standard NFA constructions for concatenation and Kleenenstaiybtain for each acyclic
derivationD an NFA M, that has at most - n? states, since all involved languages can be accepted
by NFAs of at most: states, and and each acyclic derivation has at fddst< n nonterminals. Thus,
combining the upper bound o#(G) of Lemma 3.3 with the fact that the down-operator does not increase
the nondeterministic state complexity results in an upper bouddof2"~! = 20(") states for an NFA
accepting the set),c 4y DOWN(L(Mp))—here the standard NFA construction for union is used to
obtain the result. This proves the stated claim. O

In order to derive a lower bound we use the finite langudges= { ww® | w € {a,b}" }, which
can be generated by linear context-free gramnigys= ({ A; | 1 < ¢ < n},{a,b}, P, A1) with the
productionsd; — aA;+1a, A; — bA;11b, for1 <i < n,andA,, — aa andA,, — bb. Since any NFA
acceptingL,, needs at leag” states [7], the next theorem follows. Note that the lower bound also holds
for the up-set problem.

Theorem 3.9. For everyn > 1, there is a linear context-free languabg over a binary alphabet gen-
erated by a linear context-free grammar of size— 2, such that siz€(™ is necessary for any NFA
accepting DWN(L(G)) or UP(L(G)). 0

Since linear context-free grammars are only a special case of cordex¢gsffammars, Theorem 3.7
already gives an upper bound for the size of the sgt/lJG7)), for some linear context-free grammar
of sizen. Therefore, in order of magnitude the derived lower bounds are ttepbssible.

Theorem 3.10. Let G be a linear context-free grammar of size> 1. Then size29(" s sufficient for
an NFA M to accept W(L(G)). The NFAM can effectively be constructed. 0

We summarize our bounds on up- and down-sets for linear context-figadges in the following
corollary.

Corollary 3.2. Let G be a linear context-free grammar of size Then size2°("™ is sufficient and
necessary in the worst case for an NFA to acceptid(L(G)) or UP(L(G)). The NFA can effectively
be constructed. O
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3.3. Unary Regular, Linear Context-Free, and Context-Free L anguages

Finally, we consider unary languages in more detail. We start with a complettstl characterization
of the Higman-Haines sets of unary languages. We omit the straightfopraots.

Theorem 3.11. Let L be an arbitrary nonempty unary language over the alph@et Then we have
UP(L) = {a" | n > min{ |w| | w € L}}. If Lis infinite, then DwWN(L) = {a}*, and otherwise
DOWN(L) = {a" | n <max{|w||weL}}. 0

Thus, for NFAs accepting unary languages, one obtains trivial ugopeematching lower bounds of
sizen (which, in fact, also holds for the number of states) for accepting the HigHzdmes sets. But what
about the bounds for linear context-free or context-free grammassrgimg unary languages? Unary
languages generated by (linear) context-free grammars are regoitaheir context-free grammars we
find the following situation:

Theorem 3.12. Let G be a context-free grammar of sine> 1 generating a unary languade Then
size29(™ s sufficient for an NFAV/ to accept WN(L(G)) or UP(L(G)). The NFAM can effectively
be constructed. Moreover, for eveny> 1, there is a context-free languade over a unary alphabet
generated by a context-free grammar of stze+ 2, such that siz&%("™) is necessary for any NFA
accepting @WN(L,,) or UP(L,,).

Proof:

For the upper bound we argue as follows. Without loss of generality weassiyyme that the context-
free gramma is in 2-normalform. IfG hasm nonterminals, the shortest word I{G) is at most of
length2™~!, and if L(G) is finite, then also the longest word In(G) is at most of lengti?™ . Since
the number of nonterminals is at mgst], the upper bound®™ follows immediately by Theorem 3.11.
Finally, the lower bound is literally that of Theorem 3.6. O

If we consider the number of nonterminals of a context-free grammarriarmalform as a size
measure, we obtain matching upper and lower bounds. The argumentatioml#s $0 that of the
previous proof. Moreover, we need the fact that any NFA acceptidgven-set (up-set) of a unary
language takes at least one more state than the length of the longestst$hastd of that set.

Theorem 3.13. Let GG be a context-free grammar fanormalform withn > 1 nonterminalsgenerating
a unary languagé. Then2"~! + 1 statesare sufficient and necessary in the worst case for an NFA to
accept DWN(L(G)) or UP(L(G)).

Finally, for linear context-free languages we find the following situation:

Theorem 3.14. Let G be a linear context-free grammar of size> 1 generating a unary languade
Then sizen is sufficient for NFAM to accept DWN(L(G)) or UP(L(G)). The NFAM can effectively
be constructed. Moreover, for every > 2 there is a linear context-free languaflg over a unary
alphabet generated by a linear context-free grammar of:sigech that size is necessary for any NFA
accepting @WN(L,,) or UP(L,,).
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DOwWN(L) UP(L)
bounds bounds
Languagel specifiedas...|| lower \ upper | lower \ upper
NFA n
general linear CFG 20(n) 2o(m)
CFG 2§(n) ‘ 9200
NFA
unary linear CFG "
CFG 26(n)

Table 1. Summary of upper and lower bounds on NFA size fomD(L) and Up(L), whenL is specified as
a nondeterminsitic finite automaton (NFA), linear contire grammar (linear CFG), or a context-free gram-
mar (CFG).

Proof:
Excluding only trivial cases for which the statement is readily verified, imeys may assume that
DOWN(L(G)) # {a}* and L(G) # 0. In all remaining cases ®WN(L(G)) = DowN({w}) and
UP(L(G)) = Upr({w}), for some wordw € {a}* that has an acyclic derivation i&. By the char-
acterization given in Theorem 3.11 it can be determined whether a trivgal lvalds. Otherwise, the
word w can be derived. Each linear grammar admitting an acyclic derivation dgenetahas size at
least|/G| > |w| + 1, since the axiom needs to be productive, and the right-hand sides ol¢seneed to
have at leasw| occurrences of terminal symbols. On the other hand,|size- 1 < |G/ is sufficient for
a unary NFA to accept DwWN({w}) or UP({w}).

For eachn > 2, the linear context-free grammét,, = ({S},{a},{S — a""'},S) is a witness
for the fact that the bound is tight. Any NFA needs sizén order to accept either RIL(G,,)) or
DOWN(L(Gh)). O

4. Conclusions

We have studied the size of Higman-Haines sets, which are the sets ofti@tasgaubwords of a given

language and the sets of all words that contain some word of a givendge@s a scattered subword.
In particular, we considered the Higman-Haines sets induced by comnéextlinear context-free and

regular languages. For these language families we showed lower aadhgmds on the size of finite

automata accepting the Higman-Haines set. After discussing bounds &redifsize measures for finite
automata, we concentrated on the size of nondeterministic finite automata. Foet#ssre, the results

are summarized in the Table 1. Nevertheless, several questions absitetlod Higman-Haines sets

remain unanswered. In addition to the challenges posed in [15], we Sitiggavestigate the following:

1. Can one obtain better matching bounds for the down-set of contextadnguages? What will
Table 1 look like if we measure the sizeddterministidinite automata accepting the down-set or
up-set?
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2. There are some other interesting and important subfamilies of the coregextahguages, e.g.,

bounded, deterministic or turn-bounded context-free languages. iZé® & the corresponding
Higman-Haines sets are worth studying.

. Our investigations are based on the special case of the scattereardublation. Since the result

of Higman and Haines only needs a well-partial-order one may ask similai@uetr other well-
partial-orders as, e.g., for the Parikh subword quasi-order or for tnnaownell-quasi-orders—
see [3, 13] for further results about these well-quasi-orders.
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