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Abstract. A not so well-known result in formal language theory is that the Higman-Haines sets for
any language are regular [11, Theorem 4.4]. It is easily seen that these setscannotbe effectively
computed in general. The Higman-Haines sets are the languages of all scattered subwords of a
given language as well as the sets of all words that contain some word of a given language as a
scattered subword. Recently, the exact level of unsolvability of Higman-Haines sets was studied
in [8]. Here we focus on language families whose Higman-Haines sets are effectively constructible.
In particular, we study the size of descriptions of Higman-Haines sets for the lower classes of the
Chomsky hierarchy, namely for the family of regular, linearcontext-free, and context-free languages.
We prove upper and lower bounds on the size of descriptions ofthese sets for general and unary
languages.

∗This paper is completely revised and expanded version of a paper presented at the5th International Conference on Machines,
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1. Introduction

Higman’s Lemma [11] and its generalization, namely Kruskal’s Tree Theorem[14], can be used to
show that certain rewriting systems terminate. Nevertheless, the result of Higman is not so well known
and was frequently rediscovered in the literature, see, e.g., [9, 16, 17]. Although Higman’s result
appears to be only of theoretical interest, it has some nice applications in formal language theory.
It seems that one of the first applications has been given by Haines in [9,Theorem 3], where it is
shown that the set of all scattered subwords, that is, theHigman-Haines setDOWN(L) = { v ∈ A∗ |
there existsw ∈ L such thatv ≤ w }, and the set of all words that contain some word of a given lan-
guage, that is, theHigman-Haines setUP(L) = { v ∈ A∗ | there existsw ∈ L such thatw ≤ v }, are
both regular forany languageL ⊆ A∗. Here,≤ refers to the scattered subword relation. As pointed out
in [9], this is an exceptional property, which is quite unexpected. Furtherapplications and generalizations
of Higman’s result can be found in, e.g., [5, 6, 13, 16].

It is worth mentioning that DOWN(L) and UP(L) cannot be obtained constructively in general. This
is obvious, becauseL is empty if and only if DOWN(L) and UP(L) are empty, but the question whether
or not a language is empty is undecidable for recursively enumerable languages and decidable for reg-
ular ones. Thus, as expected, for the family of recursively enumerablelanguages the Higman-Haines
sets are not constructible, while it is not hard to see that for regular languages the construction becomes
effective. But where exactly is the borderline between language families with non-constructive and con-
structive Higman-Haines sets? One might expect that, e.g., the family of context-free languages has
non-constructive Higman-Haines sets, but surprisingly this is not the case, as has been shown in [17]. On
the other hand, recently it was shown in [8] that, in general, the family of Church-Rosser languages has
non-constructive Higman-Haines sets. This language family lies in between the regular languages and
the growing context-sensitive languages, but is incomparable to the family ofcontext-free languages [1].
Moreover, in [8] the exact level of unsolvability of the Higman-Haines setsfor certain language families
was studied. Further, recursion theoretic results on the down-set of certain language families can be
found in the recent paper [4]. Thus, the non-constructive side of Higman-Haines sets is well studied. But
besides the results in [17] there is only little known about constructibility issues. Except for some results
about regular languages accepted by nondeterministic finite automata in [8] the same is true for descrip-
tional complexity issues. This is the starting point of our investigations on Higman-Haines sets whose
sizes of description are effectively computable. In particular we consider the problem of computing the
Higman-Haines sets induced by the families of regular, context-free, and linear context-free languages.
For the size of the Higman-Haines sets generated by regular languages upper and lower bounds are pre-
sented. That is, we prove that an exponential blow-up is sufficient andnecessary in the worst case for a
deterministic finite automaton to accept the Higman-Haines set DOWN(L) or UP(L) generated by some
language that is represented by another deterministic finite automaton. This nicely contrasts the result
about nondeterministic finite automata where a matching upper and lower boundof the same size as the
given automaton has been derived in [8]. Furthermore, we investigate thedescriptional complexity of the
Higman-Haines sets when the underlying device is a context-free or linear context-free grammar, where
we obtain results on general and unary languages. We obtain non-trivial upper and lower bounds for
these problems.

The paper is organized as follows. The next section contains preliminariesand basics about Higman-
Haines sets. In Section 3 we first summarize the known upper and lower bounds for nondeterministic
finite automata [8]. Then we study the sizes of description of the Higman-Haines set for regular lan-
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guages in terms of deterministic finite automata. The effect of changing the sizemeasure to the number
of transitions of the nondeterministic finite automata is briefly discussed. Furthermore, Higman-Haines
sets induced by context-free and linear context-free languages are investigated. In most cases we ob-
tain matching upper and lower bounds in the order of magnitude. Finally, we conclude with some open
problems.

2. Preliminaries

We denote the set ofnon-negative integersby N. The powersetof a setS is denoted by2S . For an
alphabetA, let A+ be the set of non-empty wordsw overA. If the empty wordλ is included, then we
use the notationA∗. For thelengthof w we write|w|. For thenumber of occurrencesof a symbola in w

we use the notation|w|a. Set inclusion is denoted by⊆, and strict set inclusion by⊂. Let v, w ∈ A∗

be words over alphabetA. We writev ≤ w if there are wordsv1, v2, . . . , vk andw1, w2, . . . , wk+1, for
somek ≥ 1, vi ∈ A∗, wi ∈ A∗, such thatv = v1v2 . . . vk andw = w1v1w2v2 . . . wkvkwk+1. In case of
v ≤ w we say thatv is a scattered subword ofw. Let L be a language over alphabetA. Then

DOWN(L) = { v ∈ A∗ | there existsw ∈ L such thatv ≤ w }

and
UP(L) = { v ∈ A∗ | there existsw ∈ L such thatw ≤ v }

are theHigman-Haines setsgenerated byL.
The next theorem is the surprising result of Haines. It has been shownabout half a century ago.

Actually, it is a corollary of Higman’s work, but let us state it as a theorem.

Theorem 2.1. ([9, 11]) Let L be an arbitrary language. Then both DOWN(L) and UP(L) are regular.

In order to talk about the economy of descriptions we first have to define what is meant by the size
of automata and grammars. In general, we are interested to measure the lengthof the string that defines
an automaton or grammar. In particular, we sometimes use more convenient andcommon size measures,
if there is a recursive upper bound for the length of the defining string dependent on the chosen size
measure. For example, for context-free grammarsM , the size|M | equals the total number of occurrences
of terminal and non-terminal symbols in the productions. For deterministic and nondeterministic finite
automataM , the size|M | equals the product of the number of states and the number of input symbols.

3. Effective Higman-Haines Set Sizes

This section is three-fold. First we turn to the family of regular languages and then to the family of
context-free languages, whose Higman-Haines sets can effectively beconstructed [17]. Finally we con-
sider the special case of unary languages. In these subsections we are interested in the constructions
itself as well as in the sizes of description of the Higman-Haines sets.

3.1. Regular Languages

Let M = (S, A, δ, s0, F ) be a nondeterministic finite automaton(NFA), whereS is the finite set of
internal states, A is the finite set ofinput symbols, s0 ∈ S is the initial state, F ⊆ S is the set of
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accepting states, andδ : S × (A∪{λ}) → 2S is thepartial transition function. An NFA is deterministic
(DFA) if and only if |δ(s, a)| ≤ 1, |δ(s, λ)| ≤ 1, and|δ(s, a)| = 1 ⇐⇒ |δ(s, λ)| = 0, for all s ∈ S and
a ∈ A.

Without loss of generality, we assume that the finite automata are alwaysreduced. This means that
there are no unreachable states and that from any state an accepting statecan be reached.

Concerning the size of an NFA accepting DOWN(L(M)) or UP(L(M)) of a given NFA language,
one finds the following situation, which was proven in [8].

Lemma 3.1. Let M be an NFA of sizen ≥ 1. Then sizen is sufficient and necessary in the worst case
for an NFAM ′ to accept DOWN(L(M)) or UP(L(M)). The NFAM ′ can effectively be constructed.

The tight bounds shown for the sizes are not too complicated. So, the natural question for bounds
based on different reasonable measures raises immediately. It turns outthat the situation is different, if
the number of defined transitions, i.e., the number of edges in the transition graph, is used to measure the
size of NFAs. Recall the construction of the NFA for the language DOWN(L(M)). At first the transition
functionδ of M is replaced byδ1, whereδ1 provides all transitions ofδ and, in addition,λ-transitions
wheneverδ provides a non-λ-transition:

∀ s ∈ S, a ∈ A : δ1(s, a) = δ(s, a) and ∀ s ∈ S : δ1(s, λ) = δ(s, λ) ∪
⋃

a∈A

δ(s, a).

So, given an inputv from DOWN(L(M)) such thatv ≤ w andw ∈ L(M), the new NFA simulatesM
onw in such a way that it guesses the missing input symbols and performs the corresponding transitions
of M asλ-transitions. Moreover, since the NFA is still reduced, there is an accepting λ-path from every
state. Therefore, we can define any state to be an accepting state. Moreover, we safely may delete all
λ-transitions from a state to itself. It is easy to see that the new NFA accepts DOWN(L(M)).

A closer look reveals that the size can be optimized. If there appears a cycle in M , then there appears
a cycle ofλ-transitions in the new NFA. In this case all states on the cycle can be merged into one
state which allows all outgoing transitions of the merged states and gets all incoming transitions to the
merged states. On the other hand, if there appears an accepting state without outgoing transitions, the
λ-transitions to that state can be omitted, since all states are accepting ones. The accepted language is not
changed by the optimizations, but regardless of whether there appears acycle or a state without outgoing
transitions, at least one transition is omitted.

The next lemma gives an upper bound due to the above construction and its optimization.

Lemma 3.2. For any NFAM with n ≥ 1 transitions, one can effectively construct an NFA accepting
DOWN(L(M)) with at most2n − 1 transitions.

Proof:
We consider the above construction of an NFA accepting the language DOWN(L(M)). The first con-
struction step inserts aλ-transition for each existing transition. So, the number of transitions is increased
from n to 2n. The optimizations reduce this number at least by one. ⊓⊔

For the special case of finite unary languages with endmarker, that is, languages of the formL{b},
whereL ⊆ {a}∗ is finite, the upper bound is much better and, in particular, is shown to be tight.
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Theorem 3.1. Let M be an NFA withn ≥ 1 transitionsaccepting a finite unary language with end-
marker. Thenn + ⌈log(n)⌉ transitionsare sufficient and necessary in the worst case for an NFAM ′ to
accept DOWN(L(M)). The NFAM ′ can effectively be constructed.

Proof:
In order to prove the lower bound we use the finite languagesLn = {an−1b} with n ≥ 1 as witnesses.
Clearly,Ln is accepted by some (n + 1)-state NFAM whose transition function definesn transitions. It
remains to be shown that any NFAM ′ which accepts DOWN(Ln) needs at leastn + ⌈log(n)⌉ transitions.
Since DOWN(Ln) is finite, automatonM ′ has no cycles. We consider accepting computations for the
scattered subwordsaib, for 0 ≤ i ≤ n − 1. For each of these subwords, automatonM performs at
leasti + 1 different transitions, sayti1, t

i
2, . . . , t

i
i+1. Let si be the state in whichM ′ reads the last letterb

from its input.
Now we will show that for each two scattered subwordsaib andajb with i < j automatonM ′ has

to use at least one transition which is not int
j
1, t

j
2, . . . , t

j
j+1 in order to acceptaib. We consider two

cases: (1) If the statessi andsj are equal, then on input prefixai automatonM ′ must have used at
least one transition, sayt′, not appearing intj1, t

j
2, . . . , t

j
j . Otherwise, there exists a cycle int

j
1, t

j
2, . . . , t

j
j .

Moreover, transitiont′ is not equal totjj+1, since the latter reads an input symbolb. (2) If the statessi

andsj are different, we denote the transition fromsi which reads the last input letterb by t′ and observe
thatt′ is different fromt

j
j+1 since the latter is defined for statesi 6= sj . Furthermore, it is different from

t
j
1, t

j
2, . . . , t

j
j since the latter do not read the input symbolb. In both cases,t′ is a new transition.

Altogether,M ′ performs at leastn different transitions to acceptan−1b. It is easy to see that, in addi-
tion, there are at least⌈log(n)⌉ more transitions in order to meet the shown condition, i.e., to distinguish
between then scattered subwordsaib, for 0 ≤ i ≤ n − 1.

In order to prove the upper bound, we turn to the construction ofM ′ with n + ⌈log(n)⌉ transitions.
Let s0, s1, . . . , sn−1, sn be the sequence of states passed through during an accepting computationon
input an−1b. This givesn − 1 a-transitions and oneb-transition. Now we addλ-transitions froms2i−1

to s2i+1−1, for all 0 ≤ i ≤ ⌊log(n)⌋ − 1. That is, froms0 to s1, from s1 to s3, from s3 to s7, and so
on. If n − 1 is not of the form2k − 1, we continue the path by adding anotherλ-transition tosn−1.
Altogether, this gives⌈log(n)⌉ transitions in addition. Finally, we distinguishs0, sn−1, andsn to be
accepting states. It is easy to see thatM ′ accepts DOWN(Ln). ⊓⊔

In the remainder of this subsection we consider DFAs. First observe thatthe constructions presented
so far heavily rely on nondeterminism. Even when starting with a DFA, the resulting automata accepting
DOWN(L(M)) or UP(L(M)) are nondeterministic in general. So, applying Lemma 3.1 and the well-
known powerset construction gives an upper bound on the size of an equivalent DFA.

Corollary 3.1. For any DFAM of sizen ≥ 1, one can effectively construct a DFA accepting UP(L(M))
or DOWN(L(M)) whose size is at most2n.

For the next two theorems we need some more notations. LetL ⊆ A∗ be an arbitrary language.
Then theMyhill-Nerodeequivalence relation≡L is defined as follows: Foru, v ∈ A∗ let u ≡L v if and
only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈ A∗. It is well known that the number of states of the
minimal deterministic finite automaton accepting the languageL ⊆ A∗ equals the cardinality of the set
of equivalence classes induced by the Myhill-Nerode relation.
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We continue our investigations by proving a non-trivial lower bound for DFAs accepting the language
DOWN(L(M)), for some given DFAM . The lower bound is quite close to the upper bound of the
previous corollary.

$ a1 a1 a1

$ a2 a2 a2

$ a3 a3 a3

a2, a3 a2, a3 a2, a3 a2, a3

a1, a3 a1, a3 a1, a3 a1, a3

a1, a2 a1, a2 a1, a2 a1, a2

#

#

#

Figure 1. A DFA of size5 · 16 accepting DOWN(L3)—the non-accepting sink state is not depicted.

Theorem 3.2. For everyn ≥ 1, there exists a languageLn over an(n + 2)-letter alphabet accepted by
a DFA of size(n + 2)(n + 1)2, such that any DFA accepting DOWN(Ln) is at least of size2Ω(n log n).

Proof:
Let A = {a1, a2, . . . , an} and#, $ 6∈ A. Consider the languageLn ⊆ (A ∪ {#, $})∗ defined as

Ln = {#j$w | w ∈ A∗, j ≥ 0, i = j mod n, |w|ai+1 = n }.

A DFA accepting languageL3 is depicted in Figure 1. It is easy to see that any DFA acceptingLn

needsn + 1 states for each letterai to count up ton. Moreover, for the#-prefix n states are used, and
finally one non-accepting sink state is needed. This results inn(n + 1) + n + 1 states, which gives size
(n + 2)(n2 + 2n + 1) = (n + 2)(n + 1)2. It is not hard to verify that the DFA is minimal.

It remains to be shown that the minimal DFA accepting DOWN(Ln) has at least(n + 2)n + 1 states,
where

DOWN(Ln) = {#jaw | w ∈ A∗, j ≥ 0, a ∈ {$, λ} and
n
∨

i=1

|w|ai
≤ n }.

First we consider any two different words of the formwi1,i2,...,in = $ai1
1 ai2

2 . . . ain
n with 0 ≤ ij ≤ n + 1

and 1 ≤ j ≤ n, and show that they are non-equivalent with respect to the Myhill-Nerode relation
≡DOWN(Ln). Let wi1,i2,...,in andwi′1,i′2,...,i′n

be two different words. Thenik 6= i′k, for some1 ≤ k ≤ n.
Without loss of generality we assume thatik < i′k. Then the word

wi1,i2,...,in · an+1
1 an+1

2 . . . an+1
k−1a

(n+1)−i′
k

k an+1
k+1 . . . an+1

n

belongs to DOWN(Ln), because letterak appears at mostn times. On the other hand,

wi′1,i′2,...,i′n
· an+1

1 an+1
2 . . . an+1

k−1a
(n+1)−i′

k

k an+1
k+1 . . . an+1

n
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does not belong to DOWN(Ln) since all lettersaj , for 1 ≤ j ≤ n, appear at leastn+1 times. Hence, there
are(n+2)n different equivalence classes induced by the wordswi1,i2,...,in . Moreover, the empty wordλ
is non-equivalent to all the other words. This is seen by concatenating thewords with$. Therefore, we
have obtained at least(n+2)n+1 equivalence classes. In fact, one can construct a DFA with this number
of states accepting DOWN(Ln). Therefore,2Ω(n log n) is a lower bound on the size of any DFA accepting
DOWN(Ln). ⊓⊔

Now we turn to deduce a lower bound on the size of any DFA accepting UP(L(M)), for a given
DFA M .

Theorem 3.3. For everyn ≥ 1, there exists a languageLn over an(n + 2)-letter alphabet accepted by
a DFA of size(n + 2)(n + 1)2, such that any DFA accepting UP(Ln) is at least of size2Ω(n log n).

Proof:
Again, we use the languageLn from the proof of Theorem 3.2. So, we already know that there is a DFA
of size(n+2)(n+1)2 acceptingLn. The description of the language UP(Ln) is more involved compared
with DOWN(Ln), since UP(Ln) has the following representation as a finite union of languages:

UP(Ln) =
n
⋃

j=1

Pj$Sj ,

where for1 ≤ j < n,

Pj = {w ∈ (A ∪ {$})∗ | |w|# = j − 1 } and Pn = {w ∈ (A ∪ {$})∗ | |w|# ≥ n − 1 },

and for1 ≤ j ≤ n,

Sj = {w ∈ (A ∪ {#, $})∗ |
j

∨

i=1

|w|ai
≥ n }.

In order to obtain the2Ω(n log n) lower bound on the size of any DFA accepting UP(Ln), it suffices to show
that UP(Ln) induces at leastnn equivalence classes with respect to the Myhill-Nerode relation≡UP(Ln).
Let

wi1,i2,...,in = #n$ai1
1 ai2

2 . . . ain
n

with 0 ≤ ij < n and1 ≤ j ≤ n. Note thatwi1,i2,...,in · an−ik
k belongs to the languagePn$Sn. Any two

different wordswi1,i2,...,in andwi′1,i′2,...,i′n
do not belong to the same equivalence class. Since both words

are different, we haveik 6= i′k, for some1 ≤ k ≤ n. Assume without loss of generality thatik < i′k.
Then it is easy to see that

wi1,i2,...,in · a
n−i′

k

k 6∈ UP(Ln) but wi′1,i′2,...,i′n
· a

n−i′
k

k ∈ UP(Ln).

In the former case
∨n

i=1 |wi1,i2,...,in · a
n−i′

k

k |ai
≥ n is false, whereas

∨n
i=1 |wi′1,i′2,...,i′n

· a
n−i′

k

k |ai
≥ n

becomes true in the latter case, since the word under consideration containsexactlyn symbolsak. There-
fore, any DFA accepting the language UP(Ln) must have at leastnn states. ⊓⊔
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In fact, with a more careful analysis one obtains that any DFA accepting UP(Ln) must have at least
nn +nn−1+ . . .+n+1 states. To this end, one shows that the languagesPi$Si, for 1 ≤ i ≤ n, induceni

pairwise different equivalence classes.
Finally, it is worth to mention that the lower bounds of the previous two theorems slightly improve

when the number of states is used to measure the size of DFAs. The next theorem summarizes the lower
bounds.

Theorem 3.4. For everyn ≥ 1, there exists a languageLn over an(n + 2)-letter alphabet accepted by a
DFA with (n + 1)2 states, such that2Ω(n log n) statesare necessary for any DFA accepting DOWN(Ln).
A similar statement is valid for UP(Ln).

After the conference version of this paper appeared, the precise number of required states for both
DOWN(L) and UP(L) was determined in [15]. The exact bounds are given as functions in the number
of states, irrespective of alphabet size. The witness languages use larger alphabets than the languages
used in this paper; therefore the mentioned work also discusses the effect of alphabet size on the required
number of states and establishes roughly exponential lower bounds also for alphabets of constant size.
Part of these results improve the lower bounds obtained here, see [15] for details.

3.2. Context-Free and Linear Context-Free Languages

In this subsection we are interested in the size of NFAs accepting the Higman-Haines sets of languages
generated by context-free and linear context-free grammars. Recall that we use the total number of
occurrences of terminal and nonterminal symbols in the productions as sizemeasure for grammars. Let
G = (N, T, P, S) be a context-free grammar, whereN is the finite set ofnonterminals, T is the finite set
of terminals, P ⊆ N × (N ∪ T )∗ is the finite set of productions, andS ∈ N is theaxiom. A context-
free grammarG = (N, T, P, S) is linear context freeif P ⊆ N × T ∗(N ∪ {λ})T ∗. Without loss of
generality, we assume that the context-free grammars are alwaysreduced, which means that there are no
unreachable or unproductive nonterminals.

As in the previous subsection we first show how to construct an NFA for DOWN(L(G)). In order
to simplify the analysis we assume that the right hand-sides of the productionsare described by NFAs
with input alphabetN ∪ T . We refer to such a grammar as anextended(linear) context-free grammar.
Note, that one can assume that for each extended context-free grammar there is exactly one NFA for each
nonterminal appearing at a right-hand side. The following theorem is a detailed analysis of the inductive
construction presented in [17].

Theorem 3.5. Let G be a context-free grammar of sizen ≥ 1. Then sizeO(n · 2
√

2n log n) is sufficient
for an NFAM ′ to accept DOWN(L(G)). The NFAM ′ can effectively be constructed.

Proof:
First, the context-free grammarG = (N, T, P, S) is transformed into an extended context-free gram-
mar G′—the details are left to the reader. Second, we observe that each nonterminal appears at the
left-hand-side of at least one production, and at least one nonterminalis rewritten by some terminal sym-
bol. Therefore, the number of nonterminals is at most⌊n

2 ⌋. Next, we inductively proceed as in [17]. For
a nonterminalA ∈ N we set the alphabetTA = (N \ {A}) ∪ T , and define the extended context-free
grammarGA = ({A}, TA, PA, A) with PA = {A → M | (A → M) ∈ P}, whereM in (A → M) ∈ P
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refers to the NFA of the right hand-side of the production. Further setLA = L(GA). Observe thatGA

is an extended context-free grammar with onlyonenonterminal, and thus one can obtain an NFAMA

describing DOWN(L(GA)) over the alphabetTA by a subroutine to be detailed below. Then the induc-
tion is as follows: LetG0 = G′. If A is not the axiomS of G0, we can replace eachA-transition
occurring in the right-hand-side automata of non-A-productions ofG0 with a copy ofMA to obtain an
extended grammarG1 having one nonterminal less thanG0, and DOWN(L(G1)) = DOWN(L(G0)).
This construction step can be iterated for at most⌊n

2 ⌋ − 1 times, yielding extended context-free gram-
marsG2, G3, . . . , G⌊n

2
⌋−1, satisfying DOWN(L(Gi)) = DOWN(L(Gi+1)), for 0 ≤ i < ⌊n

2 ⌋, where
in the latter grammarG⌊n

2
⌋−1 the only remaining nonterminal is the axiomS of G. Finally, we apply

the mentioned subroutine to construct the NFAM ′ which results in the finite automaton accepting the
language DOWN(L(G)).

It remains to describe the above mentioned subroutine and deduce an upper bound on the size of the
automatonM ′. The subroutine works for an extended grammarGA = ({A}, TA, {A → M}, A) with
only onenonterminal. We distinguish two cases:

1. The production set given byL(M) is linear, i.e.,L(M) ⊆ T ∗
A{A, λ}T ∗

A, or

2. the production set given byL(M) is nonlinear.

In the first case, we construct an NFAMT with L(MT ) = L(M) ∩ T ∗
A, which is obtained by removing

all A-transitions fromM . Similarly, we build NFAsMP andMS for the quotients

L(MP ) = {x ∈ T ∗
A | xAz ∈ L(M) for somez ∈ (TA ∪ {A})∗ } and

L(MS) = { z ∈ T ∗
A | xAz ∈ L(M) for somex ∈ (TA ∪ {A})∗ }.

Then it is straightforward to construct an NFAMA having a single initial state and a single accepting
state withL(MA) = DOWN(L(MP )∗ · L(MT ) · L(MS)∗) = DOWN(L(GA)). The number of non-λ-
transitions, inMA is at most three times that ofM .

In the second case, i.e.,L(M) is nonlinear, we construct automataMP , MT , MS , andMI , where
the former three NFAs are as in the previous case, andMI accepts the quotient

L(MI) = { y ∈ T ∗
A | xAyAz ∈ L(M) for somex, z ∈ (TA ∪ {A})∗ }.

Again, it is not hard to construct an NFAMA with a single initial and a single accepting state accepting
L(MA) = DOWN((L(MT ) ∪L(MP )∪L(MI)∪L(MS))∗) = DOWN(L(GA)) with no more than four
times as many non-λ-transitions asM .

The upper bound on the size of an NFA accepting DOWN(L(G)) is deduced as follows: For an
extended context-free grammarG, let |G|t denote the sum of the number of non-λ-transitions in the
right-hand-side automata in the productions ofG. With this notation we obtain the recurrence

|Gk|t ≤ 4 · (|Gk−1|t)
2, for 1 ≤ k < ⌊n

2 ⌋,

describing the substitution step in thekth iteration of the construction ofGk from Gk−1. Taking loga-
rithms and settingHk = log |Gk|t, we obtain a linear recurrenceHk ≤ 2 · Hk−1 + 2. Solving the linear
recurrence, we obtain the inequalityHk ≤ 2k · H0 + 2k+1 − 2. Since|G0|t ≤ n, we have

H⌊n
2 ⌋−1 ≤ 2⌊

n
2 ⌋−1 · H0 + 2⌊

n
2 ⌋ − 2 ≤ 2⌊

n
2 ⌋−1 · log n + 2⌊

n
2 ⌋ − 2.
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When replacing the axiom inG⌊n
2
⌋−1 in the final step, the number of non-λ-transitions is increased at

most by a factor of four, which results in

|G⌊n
2 ⌋
|t ≤ 22⌊

n
2 ⌋−1·log n+2⌊

n
2 ⌋ ≤ 22⌊

n
2 ⌋−1·log n+2⌊

n
2 ⌋−1·log n ≤ 22⌊

n
2 ⌋ log n ≤ 2

√
2n log n,

for all n ≥ 4. It remains to be shown that for every NFA withn non-λ-transitions, there is an equivalent
NFA with at mostO(n) states. An easy construction can be used to remove all non-initial states having
neither ingoing nor outgoing alphabetical transitions after adding some extraλ-transitions where neces-
sary. By a simple counting argument, we find that the latter automaton has at most2n + 1 states. Hence,
this shows that the NFAM ′ accepting DOWN(L(G)) has a size of at mostO(n · 2

√
2n log n). ⊓⊔

For the lower bounds we obtain:

Theorem 3.6. For everyn ≥ 1, there is a languageLn over a unary alphabet generated by a context-
free grammar of size3n + 2, such that size2Ω(n) is necessary for any NFA accepting DOWN(L(G)) or
UP(L(G)).

Proof:
For everyn ≥ 1, consider the finite unary languagesLn = {a2n

} generated by the context-free grammar
G = ({A1, A2, . . . , An+1}, {a}, P, A1) with the productionsAi → Ai+1Ai+1, for 1 ≤ i ≤ n, and
An+1 → a. Obviously, grammarG has size3n + 2. The worda2n

is the longest word in DOWN(L(G))
and the shortest word in UP(L(G)). In both cases, any finite automaton accepting the language takes at
least as many states as the length of the word. So, it takes at least least2n states and, thus, has at least
size2n. ⊓⊔

Now we turn our attention to the construction of an NFA accepting UP(L(G)), for a context-free
grammarG. To this end, we call a wordw ∈ L minimal in L if and only if there is no differentv ∈ L

with v ≤ w. The set of minimal elements inL is called abasis of the languageUP(L). Observe that any
shortest word inL is minimal inL, and any such word must therefore be part of the basis. In fact, Hig-
man’s Lemma [11] says that for any arbitrary languageL there exists a natural numbern, which depends
only on L, such that UP(L) =

⋃

1≤i≤n UP({wi}), for some wordswi ∈ L with 1 ≤ i ≤ n. Some-
times the result is called thefinite basis property. For the construction of an NFA accepting UP(L(G)),
whereG is a context-free grammar with terminal alphabetA, we proceed as follows:

1. Determine the basisB ⊆ A∗ of the language UP(L(G)) with the algorithm presented in [17].

2. Construct an NFAM accepting languageB, and apply the construction given in the previous
subsection to obtain an NFAM ′ accepting UP(B), which equals the language UP(L(G)) by the
finite basis property.

The first step basically consists of inductively computingB starting fromB0 = ∅. LanguageBi+1 is
obtained by extendingBi by a shortest wordw in L(G) \ UP(Bi), i.e., settingBi+1 = Bi ∪ {w}. This
process is repeated as long as(L(G) \ UP(Bi)) 6= ∅. If this condition is met, the setB equals the last
extendedBi. Since context-free languages are closed under set difference with regular sets, the setB
can effectively be constructed. Taking this approach we would end up with a double exponential upper
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bound for the NFA accepting the up-set of a context-free language. Nevertheless, in the next theorem we
show that we can do much better.

In the proof to come we require that the context-free grammar is in2-normalform, i.e., the produc-
tions are of the formP ⊆ N ×(N2∪T 2∪NT ∪TN ∪N ∪T ∪{λ}). This is no restriction, since in [10]
it was shown that for a given context-free grammar of sizen one can effectively construct an equivalent
context-free grammar in2-normalform of size at most3 · n.

Theorem 3.7. Let G be a context-free grammar of sizen ≥ 1. Then size2O(n) is sufficient for an
NFA M to accept UP(L(G)). The NFAM can effectively be constructed.

Proof:
Let G = (N, T, P, S) be the context-free grammar. Without loss of generality, we may assume thatG

is in 2-normalform. IfL(G) is empty, the statement is obviously true. Thus, assumeL(G) 6= ∅ for the
rest of the proof. LetB denote the basis ofL = L(G). Then we argue as follows: Essentially the same
argument as the one used in the pumping lemma shows that each wordz in B admits a derivation tree
that isacyclic, in the sense that on each path from the root, each nonterminal can occurat most once—in
fact, this might not be true for all such trees, since the2-normalform ofG allows cyclic chains of unit
productions. Otherwise we could decomposez = uvwxy such that its proper subworduwy would also
be inL, contradictingz ∈ B. In particular, wordz has a derivation tree whereS occurs only at the root.
Now letG′ be the context-free grammar obtained fromG by removing all rules in

Prhs,S = {A → α | A → α ∈ P andS appears inα },

that is,G′ = (N, T, P \ Prhs,S , S). By the above given argument, this does not change the basis of the
generated language, i.e., both languagesL(G) andL(G′) have the same basisB.

Now define
Plhs,S = {S → α | (S → α) ∈ P }

and for each symbolA ∈ N ∪ T that appears at the right-hand-side of a rule inPlhs,S define the
context-free languageLA to be generated by the context-free grammarGA = (N, T, PA, A), where
PA = P \ (Plhs,S ∪ Prhs,S), if A ∈ N , andLA = {A}, if A ∈ T . It should be clear that the basis
of L(G′), or equivalently ofL, is obtained by computing the basis of

⋃

(S→XY )∈Plhs,S

X,Y ∈N∪T∪{λ}

LX · LY , (1)

whereLX = {λ}, if X = λ. Clearly, the basis ofLX · LY is a subset of the basis ofLX concatenated
with the basis ofLY . Since the number of productions used to generateLX or LY by a context-free
grammar has decreased by at least|Plhs,S |, this gives a terminating recursive algorithm for computing
the basisB of L from the context-free grammarG.

Next we show how to construct an NFAM having at most2|P | + 1 states accepting the basisB

of L, using the above described recursive algorithm. The prove is done by induction on the number of
productions ofG. Letn = |P |. In the base casen = 1, the language generated byG contains at most one
word of length at most2, and thus, the statement clearly holds in this case. To do the induction step, we
use the fact that the basis computation ofL based on Equation (1) and the comment given afterwards can
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be implemented using standard NFA constructions for concatenation and unionof finite languages [12],
giving

nsc(L) ≤
∑

(S→XY )∈Plhs,S

X,Y ∈N∪T∪{λ}

(nsc(LX) + nsc(LY ) − 1) − 2(|Plhs,S | − 1)

as an upper bound on the number of states ofM . Here nsc(L) denotes the number of states of an NFA
accepting the basis ofL. Since each languageLX andLY can be generated by a context-free grammar
with at mostmax{1, n−r} productions, wherer = |Plhs,S |, for r < n we obtain by induction hypothesis

nsc(L) ≤ r ·
(

2 · (2n−r + 1) − 1
)

− 2(r − 1) = r · 21−r · 2n − r + 2.

Forr ≥ 1, the right-hand-side is at most2n +1. It remains to prove the statement forr = n. In this case,
the only productions inG′ are that ofPlhs,S . But then it is easy to construct an NFA withn+2 ≤ 2n +1
states accepting the basisB of L. This completes the proof and shows that the number of states ofM is
at most2|P | +1. Thus, thesizeof M in terms of the sizen of G is bounded above byn · (2n +1), which
is of order2O(n) as stated. ⊓⊔

In the remainder of this section we concentrate on linear context-free languages. As in the previous
proof, we make use of the notion of acyclic derivations, that is, on the pathfrom the root to the leaves,
each nonterminal can occur at most once. For derivations induced by linear context-free grammars this
implies that no nonterminal occurs more than once in the derivation. Note that even if the sequences
of nonterminals derived in acyclic derivations are equal, the derivation may be different. The following
lemma gives an upper bound on the cardinality of acyclic derivations of linear context-free grammars.

Lemma 3.3. Let G = (N, T, P, S) be a linear context-free grammar withm productions. Then

|A(G)| ≤ 2m−1,

whereA(G) denotes the set of all acyclic derivationsS ⇒∗ w in G, for w ∈ T ∗.

Proof:
Each production of a linear context-free grammar may appear at most oncein any acyclic derivation.
Moreover, the set of applied productions is naturally ordered by the nonterminals on the right-hand
and left-hand-sides. So, each acyclic derivation corresponds to an (ordered) subset ofP , that contains
exactly one production with the axiom at its left-hand-side. In total we obtain at most2m−1 different
acyclic derivations. ⊓⊔

Now we are prepared for our first result on linear context-free grammars.

Theorem 3.8. Let G be a linear context-free grammar of sizen ≥ 1. Then size2O(n) is sufficient for
an NFAM to accept DOWN(L(G)). The NFAM can effectively be constructed.

Proof:
Let G = (N, T, P, A1) be a linear context-free grammar. The basic idea for the construction ofM is
to inspect the derivation trees ofG and to modify the underlying grammar such that any self-embedding
derivation of the formA ⇒∗ xAz, for someA ∈ N andx, z ∈ T ∗, is replaced by a derivationA ⇒∗ xA
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andA ⇒∗ Az, while the respective generated languages have the same down-sets. Inother words, the
derivation that produces the “coupled” terminal wordsx andz is made “uncoupled” by a right-linear
and a left-linear derivation. In order to make the construction work, one has to take care about these
self-embedded derivation parts in an appropriate manner. For a formal treatment of the construction we
need some notation.

Let S = A1 ⇒∗ w be a derivation ofw ∈ T ∗. Then the inner nodes of the derivation tree form a
pathp = A1A2 . . . Ak, for somek ≥ 1. We can group the inner nodes as follows: We call a subpath
of p that represents a self-embedded derivation with nonterminalA, i.e., which begins and ends with the
same nonterminalA, anA-block—trivial derivations of the formA ⇒∗ A also count as blocks. Now
we collapse blocks in order to obtain an acyclic derivation as follows. We consider the pathp from left
to right. If there is a nonterminal, sayAi, that appears at least twice, then the leftmost and rightmost
occurrence defines a block that is collapsed. This means, the corresponding subpath from the firstAi to
the lastAi is deleted. The initial subpath from the axiom to the firstAi is kept, and the new derivation
continues as from the lastAi. This process is repeated until each nonterminal appears at most once
(see Figure 2). In this way, each derivation corresponds to an acyclicone andvice versa.

A1

A2

A2

A3

A3

A1

A4

A2

A3

A2

A7

A3

A5

A3

A6

Figure 2. Collapsing the pathp = A1A4A2A3A2A7A3A5A3A6 yields the pathA1A4A2A7A3A6 that corre-
sponds to an acyclic derivation. Blocks are gray shaded and their subderivations are drawn by a curled line. Single
step subderivations are grouped together. They are depicted white and their subderivations are drawn by a solid
line.

Now consider theacyclicderivationD : S = A1 ⇒∗ w of w ∈ T ∗ induced by the linear context-free
rulesAi → xiAi+1zi with xi, zi ∈ T ∗ andAi ∈ N , for 1 ≤ i < k, andAk → y with y ∈ T ∗, for some
k ≤ |N |. For each nonterminalA ∈ N we consider the quotients

L(MA,P ) = {x ∈ T ∗ | A ⇒∗ xAz for somez ∈ T ∗ } and

L(MA,S) = { z ∈ T ∗ | A ⇒∗ xAz for somex ∈ T ∗ }.

By deletingz from any productionA → xBz, for x, z ∈ T ∗ andB ∈ N , deletingAz from any
productionA → xAz, for x, z ∈ T ∗, and erasing each productionA → y, for y ∈ T ∗ we obtain a
rightlinear grammar forL(MA,P ). Similarly, we construct a leftlinear grammar forL(MA,S). Then it is
straightforward to construct NFAsMA,P andMA,S acceptingL(MA,P ) andL(MA,S) that have a single
initial state and a single accepting state, respectively. Both NFAs can be constructed such that they have
at most|N | ≤ n states.

For the acyclic derivationD fromA(G) we obtain an NFAMD accepting the languageL(D1) which
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is inductively defined as follows: For1 ≤ i ≤ k − 1 let

L(Di) = L(MAi,P )∗ · {xi} · L(Di+1) · {zi} · L(MAi,S)∗

and
L(Dk) = L(MAk,P )∗ · {y} · L(MAk,S)∗.

Then by our previous investigations one observes that

DOWN(L(G)) =
⋃

D∈A(G)

DOWN(L(MD)),

since the down-set of the set of all partial derivations correspondingto anA-block equals the language
DOWN(L(MA,P )∗ · A · L(MA,S)∗).

By using standard NFA constructions for concatenation and Kleene star,we obtain for each acyclic
derivationD an NFA MD that has at most4 · n2 states, since all involved languages can be accepted
by NFAs of at mostn states, and and each acyclic derivation has at most|N | ≤ n nonterminals. Thus,
combining the upper bound onA(G) of Lemma 3.3 with the fact that the down-operator does not increase
the nondeterministic state complexity results in an upper bound of4n2 · 2n−1 = 2O(n) states for an NFA
accepting the set

⋃

D∈A(G) DOWN(L(MD))—here the standard NFA construction for union is used to
obtain the result. This proves the stated claim. ⊓⊔

In order to derive a lower bound we use the finite languagesLn = {wwR | w ∈ {a, b}n }, which
can be generated by linear context-free grammarsGn = ({Ai | 1 ≤ i ≤ n }, {a, b}, P, A1) with the
productionsAi → aAi+1a, Ai → bAi+1b, for 1 ≤ i < n, andAn → aa andAn → bb. Since any NFA
acceptingLn needs at least2n states [7], the next theorem follows. Note that the lower bound also holds
for the up-set problem.

Theorem 3.9. For everyn ≥ 1, there is a linear context-free languageLn over a binary alphabet gen-
erated by a linear context-free grammar of size8n − 2, such that size2Ω(n) is necessary for any NFA
accepting DOWN(L(G)) or UP(L(G)). ⊓⊔

Since linear context-free grammars are only a special case of context-free grammars, Theorem 3.7
already gives an upper bound for the size of the set UP(L(G)), for some linear context-free grammarG

of sizen. Therefore, in order of magnitude the derived lower bounds are the best possible.

Theorem 3.10. Let G be a linear context-free grammar of sizen ≥ 1. Then size2O(n) is sufficient for
an NFAM to accept UP(L(G)). The NFAM can effectively be constructed. ⊓⊔

We summarize our bounds on up- and down-sets for linear context-free languages in the following
corollary.

Corollary 3.2. Let G be a linear context-free grammar of sizen. Then size2Θ(n) is sufficient and
necessary in the worst case for an NFA to accept DOWN(L(G)) or UP(L(G)). The NFA can effectively
be constructed. ⊓⊔
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3.3. Unary Regular, Linear Context-Free, and Context-Free Languages

Finally, we consider unary languages in more detail. We start with a complete structural characterization
of the Higman-Haines sets of unary languages. We omit the straightforwardproofs.

Theorem 3.11. Let L be an arbitrary nonempty unary language over the alphabet{a}. Then we have
UP(L) = { an | n ≥ min{ |w| | w ∈ L } }. If L is infinite, then DOWN(L) = {a}∗, and otherwise
DOWN(L) = { an | n ≤ max{ |w| | w ∈ L } }. ⊓⊔

Thus, for NFAs accepting unary languages, one obtains trivial upperand matching lower bounds of
sizen (which, in fact, also holds for the number of states) for accepting the Higman-Haines sets. But what
about the bounds for linear context-free or context-free grammars generating unary languages? Unary
languages generated by (linear) context-free grammars are regular. For their context-free grammars we
find the following situation:

Theorem 3.12. Let G be a context-free grammar of sizen ≥ 1 generating a unary languageL. Then
size2O(n) is sufficient for an NFAM to accept DOWN(L(G)) or UP(L(G)). The NFAM can effectively
be constructed. Moreover, for everyn ≥ 1, there is a context-free languageLn over a unary alphabet
generated by a context-free grammar of size3n + 2, such that size2Ω(n) is necessary for any NFA
accepting DOWN(Ln) or UP(Ln).

Proof:
For the upper bound we argue as follows. Without loss of generality we mayassume that the context-
free grammarG is in 2-normalform. IfG hasm nonterminals, the shortest word inL(G) is at most of
length2m−1, and ifL(G) is finite, then also the longest word inL(G) is at most of length2m−1. Since
the number of nonterminals is at most⌈n

2 ⌉, the upper bound2O(n) follows immediately by Theorem 3.11.
Finally, the lower bound is literally that of Theorem 3.6. ⊓⊔

If we consider the number of nonterminals of a context-free grammar in2-normalform as a size
measure, we obtain matching upper and lower bounds. The argumentation is similar to that of the
previous proof. Moreover, we need the fact that any NFA accepting adown-set (up-set) of a unary
language takes at least one more state than the length of the longest (shortest) word of that set.

Theorem 3.13. Let G be a context-free grammar in2-normalform withn ≥ 1 nonterminalsgenerating
a unary languageL. Then2n−1 + 1 statesare sufficient and necessary in the worst case for an NFA to
accept DOWN(L(G)) or UP(L(G)).

Finally, for linear context-free languages we find the following situation:

Theorem 3.14. Let G be a linear context-free grammar of sizen ≥ 1 generating a unary languageL.
Then sizen is sufficient for NFAM to accept DOWN(L(G)) or UP(L(G)). The NFAM can effectively
be constructed. Moreover, for everyn ≥ 2 there is a linear context-free languageLn over a unary
alphabet generated by a linear context-free grammar of sizen, such that sizen is necessary for any NFA
accepting DOWN(Ln) or UP(Ln).



16 H. Gruber, M. Holzer, M. Kutrib / More on the Size of Higman-Haines Sets: Effective Constructions

DOWN(L) UP(L)

bounds bounds

LanguageL specified as . . . lower upper lower upper

NFA n

general linear CFG 2Θ(n)

CFG 2Ω(n) 22O(n) 2Θ(n)

NFA

unary linear CFG
n

CFG 2Θ(n)

Table 1. Summary of upper and lower bounds on NFA size for DOWN(L) and UP(L), whenL is specified as
a nondeterminsitic finite automaton (NFA), linear context-free grammar (linear CFG), or a context-free gram-
mar (CFG).

Proof:
Excluding only trivial cases for which the statement is readily verified, we always may assume that
DOWN(L(G)) 6= {a}∗ and L(G) 6= ∅. In all remaining cases DOWN(L(G)) = DOWN({w}) and
UP(L(G)) = UP({w}), for some wordw ∈ {a}∗ that has an acyclic derivation inG. By the char-
acterization given in Theorem 3.11 it can be determined whether a trivial case holds. Otherwise, the
word w can be derived. Each linear grammar admitting an acyclic derivation generating w has size at
least|G| ≥ |w|+ 1, since the axiom needs to be productive, and the right-hand sides of the rules need to
have at least|w| occurrences of terminal symbols. On the other hand, size|w|+ 1 ≤ |G| is sufficient for
a unary NFA to accept DOWN({w}) or UP({w}).

For eachn ≥ 2, the linear context-free grammarGn = ({S}, {a}, {S → an−1}, S) is a witness
for the fact that the bound is tight. Any NFA needs sizen in order to accept either UP(L(Gn)) or
DOWN(L(Gn)). ⊓⊔

4. Conclusions

We have studied the size of Higman-Haines sets, which are the sets of all scattered subwords of a given
language and the sets of all words that contain some word of a given language as a scattered subword.
In particular, we considered the Higman-Haines sets induced by context-free, linear context-free and
regular languages. For these language families we showed lower and upper bounds on the size of finite
automata accepting the Higman-Haines set. After discussing bounds for different size measures for finite
automata, we concentrated on the size of nondeterministic finite automata. For thismeasure, the results
are summarized in the Table 1. Nevertheless, several questions about thesize of Higman-Haines sets
remain unanswered. In addition to the challenges posed in [15], we suggest to investigate the following:

1. Can one obtain better matching bounds for the down-set of context-free languages? What will
Table 1 look like if we measure the size ofdeterministicfinite automata accepting the down-set or
up-set?
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2. There are some other interesting and important subfamilies of the context-free languages, e.g.,
bounded, deterministic or turn-bounded context-free languages. The sizes of the corresponding
Higman-Haines sets are worth studying.

3. Our investigations are based on the special case of the scattered subword relation. Since the result
of Higman and Haines only needs a well-partial-order one may ask similar questions for other well-
partial-orders as, e.g., for the Parikh subword quasi-order or for monotone well-quasi-orders—
see [3, 13] for further results about these well-quasi-orders.
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