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Abstract. A not well-known result [9, Theorem 4.4] in formal language
theory is that the Higman-Haines sets for any language are regular, but
it is easily seen that these sets cannot be effectively computed in general.
Here the Higman-Haines sets are the languages of all scattered subwords
of a given language and the sets of all words that contain some word
of a given language as a scattered subword. Recently, the exact level of
unsolvability of Higman-Haines sets was studied in [10]. We focus on lan-
guage families whose Higman-Haines sets are effectively constructible. In
particular, we study the size of Higman-Haines sets for the lower classes of
the Chomsky hierarchy, namely for the families of regular, linear context-
free, and context-free languages, and prove upper and lower bounds on
the size of these sets.

1 Introduction

Higman’s lemma [9] and its generalization, namely Kruskal’s Tree Theorem [12],
can be used to show that certain rewriting systems terminate. Nevertheless, the
result of Higman is not so well known and was frequently rediscovered in the
literature, e.g., [8, 13, 14]. Although Higman’s result appears to be only of theo-
retical interest, it has some nice applications in formal language theory. It seems
that one of the first applications has been given by Haines in [8, Theorem 3],
where it is shown that the set of all scattered subwords, i.e., the Higman-Haines

set Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }, and the set of
all words that contain some word of a given language, i.e., the Higman-Haines

set Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }, are both regular
for any language L ⊆ A∗. Here, ≤ refers to the scattered subword relation. As
pointed out in [8], this is an exceptional property which is quite unexpected.
Further applications and generalizations of Higman’s result can be found, e.g.,
in [4, 5, 11, 13].
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It is worth mentioning that Down(L) and Up(L) cannot be obtained con-
structively in general. This is clear, because L is empty if and only if Down(L)
and Up(L) are empty, but the question whether or not a language is empty
is undecidable for recursively enumerable languages and decidable for regular
ones. Thus, as expected, for the family of recursively enumerable languages
the Higman-Haines sets are not constructible, while it is not hard to see that
for regular languages the construction becomes effective. But where exactly is
the borderline between language families with non-constructive and construc-
tive Higman-Haines sets? One might expect that, e.g., the family of context-free
languages has non-constructive Higman-Haines sets, but surprisingly this is not
the case, as proven in [14]. On the other hand, recently it was shown in [10]
that, for instance, the family of Church-Rosser languages has non-constructive
Higman-Haines sets. This language family lies in between the regular languages
and the growing context-sensitive languages, but is incomparable to the family
of context-free languages [1]. Moreover, in [10] the exact level of unsolvability
of the Higman-Haines sets for certain language families is studied. Thus, the
non-constructive side of Higman-Haines sets is well studied, but is there more to
be known about effective constructibility issues as presented in [14]? Moreover,
are there any results about descriptional complexity issues? To our knowledge
this is not the case, except for some results about regular languages accepted
by nondeterministic finite automata in [10]. This is the starting point of our
investigations about effective Higman-Haines set sizes. In particular we con-
sider the problem of computing the Higman-Haines sets induced by the families
of regular, context-free, and linear context-free languages. For the size of the
Higman-Haines sets generated by regular languages upper and lower bounds are
presented. That is, we prove that an exponential blow-up is sufficient and neces-
sary in the worst case for a deterministic finite automaton to accept the Higman-
Haines set Down(L) or Up(L) generated by some language that is represented
by another deterministic finite automaton. This nicely contrasts the result about
nondeterministic finite automata where a matching upper and lower bound on
the size of Higman-Haines sets is shown [10]. Furthermore, we investigate the
descriptional complexity of the Higman-Haines sets when the underlying device
is a context-free or linear context-free grammar.

The paper is organized as follows. The next section contains preliminaries and
basics about Higman-Haines sets. Then Section 3 first recalls the known upper
and lower bounds for nondeterministic finite automata [10], and then studies
the size of the Higman-Haines set for regular languages in terms of deterministic
finite automata size. In addition, Higman-Haines sets induced by context-free
and linear context-free languages are investigated.

2 Preliminaries

We denote the set of non-negative integers by N. The powerset of a set S is
denoted by 2S . For an alphabet A, let A+ be the set of non-empty words w
over A. If the empty word λ is included, then we use the notation A∗. For the
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length of w we write |w|. For the number of occurrences of a symbol a in w
we use the notation |w|a. Set inclusion is denoted by ⊆, and strict set inclusion
by ⊂. Let v, w ∈ A∗ be words over alphabet A. We define v ≤ w if and only
if there are words v1, v2, . . . , vk and w1, w2, . . . , wk+1, for some k ≥ 1, vi ∈ A∗,
wi ∈ A∗, such that v = v1v2 . . . vk and w = w1v1w2, v2 . . . wkvkwk+1. In case
of v ≤ w we say that v is a scattered subword of w. Let L be a language over
alphabet A. Then

Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }
and

Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }

are the Higman-Haines sets generated by L. The next theorem is the surprising
result of Haines. It has been shown about half a century ago. Actually, it is a
corollary of Higman’s work, but let us state it as a theorem.

Theorem 1 ([8, 9]). Let L be an arbitrary language, then both Down(L) and

Up(L) are regular.

In order to talk about the economy of descriptions we first have to define
what is meant by the size of automata and grammars. In general, we are inter-
ested to measure the length of the string that defines an automaton or grammar.
In particular, we sometimes use more convenient size measures, if there is a
recursive upper bound for the length of the defining string dependent on the
chosen size measure. For example, for context-sensitive and context-free gram-

mars M , the size |M | equals the total number of occurrences of terminal and
nonterminal symbols in the productions. For deterministic and nondeterministic

finite automata M , the size |M | equals the product of the number of states and
the number of input symbols.

3 Effective Higman-Haines Set Sizes

Next we turn to the family of regular languages and then to the family of context-
free languages, whose Higman-Haines sets can effectively be constructed [14]. We
are interested in the constructions itself as well as in the sizes of the Higman-
Haines sets.

3.1 Regular Languages

Let M = (S,A, δ, s0, F ) be a nondeterministic finite automaton (NFA), where S
is the finite set of internal states, A is the finite set of input symbols, s0 ∈ S is
the initial state, F ⊆ S is the set of accepting states, and δ : S × (A∪{λ}) → 2S

is the partial transition function. An NFA is deterministic (DFA) if and only if
|δ(s, a)| ≤ 1, |δ(s, λ)| ≤ 1, and |δ(s, a)| = 1 ⇐⇒ |δ(s, λ)| = 0, for all s ∈ S and
a ∈ A. Without loss of generality, we assume that the NFAs are always reduced.
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This means that there are no unreachable states and that from any state an
accepting state can be reached.

Concerning the size of an NFA accepting Down(L(M)) or Up(L(M)) for a
given NFA M , one finds the following situation, which was proven in [10].

Lemma 2. Let M be an NFA of size n. Then size n is sufficient and necessary

in the worst case for an NFA M ′ to accept Down(L(M)) or Up(L(M)). The

NFA M ′ can effectively be constructed.

In the remainder of this subsection we consider DFAs. First observe, that
the results presented so far heavily rely on nondeterminism, i.e., even when
starting with a DFA M , the resulting automata accepting Down(L(M)) or
Up(L(M)) are nondeterministic in general. So, applying the well-known power-
set construction gives an upper bound on the size of an equivalent DFA.

Corollary 3. For any DFA M of size n, one can effectively construct a DFA

accepting Down(L(M)) or Up(L(M)) whose size is at most 2n. ⊓⊔
For the next two theorems we need some more notations. Let L ⊆ A∗ be an

arbitrary language. Then the Myhill-Nerode equivalence relation ≡L is defined as
follows: For u, v ∈ A∗, let u ≡L v if and only if uw ∈ L ⇐⇒ vw ∈ L, for all w ∈
A∗. It is well known that the number of states of the minimal deterministic finite
automaton accepting the language L ⊆ A∗ equals the index, i.e., the cardinality
of the set of equivalence classes, of the Myhill-Nerode equivalence relation.

We continue our investigations by proving a non-trivial lower bound for DFAs
accepting the language Down(L(M)), for some given DFA M , that is quite close
to the upper bound of the previous corollary.

Theorem 4. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA of size (n + 2)(n + 1)2, such that size 2Ω(n log n) is

necessary for any DFA accepting Down(Ln).

Proof. Let A = {a1, a2, . . . , an} and #, $ 6∈ A. Consider the witness language
Ln = {#j$w | w ∈ A∗, j ≥ 0, i = j mod n, |w|ai+1

= n } ⊆ (A ∪ {#, $})∗.
A DFA accepting language L3 is depicted in Figure 1. It is not hard to see
that any DFA accepting Ln needs n + 1 states for each letter ai to count up
to n. Moreover, for the #-prefix n states are used, and finally one non-accepting
sink state is needed. This results in n(n + 1) + n + 1 states, which gives size
(n + 2)(n2 + 2n + 1) = (n + 2)(n + 1)2. It is not hard to verify that the DFA is
minimal. Recall the construction of an NFA for the down-set. Then one observes
that Down(Ln) = {#jaw | w ∈ A∗, j ≥ 0, a ∈ {$, λ} and

∨n

i=1 |w|ai
≤ n }.

It remains to be shown that the minimal DFA accepting Down(Ln) has
at least (n + 1)n + 2 states. First observe that any two different words of the
form wi1,i2,...,in

= $ai1
1 ai2

2 . . . ain

n with 0 ≤ ij ≤ n and 1 ≤ j ≤ n are non-
equivalent with respect to the Myhill-Nerode relation ≡Down(Ln). Let wi1,i2,...,in

and wi′1,i′2,...,i′
n

be two different words. Then ik 6= i′k, for some 1 ≤ k ≤ n.
Without loss of generality we assume ik < i′k. Then the word

wi1,i2,...,in
· an+1

1 an+1
2 . . . an+1

k−1a
(n+1)−i′

k

k an+1
k+1 . . . an+1

n
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$ a1 a1 a1

$ a2 a2 a2

$ a3 a3 a3

a2, a3 a2, a3 a2, a3 a2, a3

a1, a3 a1, a3 a1, a3 a1, a3

a1, a2 a1, a2 a1, a2 a1, a2

#

#

#

Fig. 1. A DFA of size 5 · 16 accepting Down(L3)—the non-accepting sink state is not
shown.

belongs to Down(Ln) because letter ak appears at most n times. On the other

hand, the word wi′1,i′2,...,i′
n
·an+1

1 an+1
2 . . . an+1

k−1a
(n+1)−i′

k

k an+1
k+1 . . . an+1

n is not mem-
ber of Down(Ln) since all letters ai, for 1 ≤ i ≤ n, appear at least n + 1
times. Hence, there are (n + 1)n different equivalence classes induced by the
words wi1,i2,...,in

. Moreover, none of the words λ, wi1,i2,...,in
with 0 ≤ ij ≤ n

and 1 ≤ j ≤ n, and $an+1
1 an+1

2 . . . an+1
n belong to the same equivalence classes.

For λ and wi1,i2,...,in
this is seen by concatenating the words with $, and the

remaining pairs are shown to be non-equivalent by concatenating them with the
empty word λ. Therefore, we have obtained at least (n + 1)n + 2 equivalence
classes. In fact, one can construct a DFA with exactly this number of states
accepting Down(Ln). The details are left to the reader. Therefore, 2Ω(n log n) is
a lower bound on the size of any DFA accepting Down(Ln). ⊓⊔

The next theorem gives a lower bound for the size of any DFA accepting
Up(L(M)), for a given DFA M . The proof is similar to the proof of the previous
theorem.

Theorem 5. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA of size (n + 2)(n + 1)2, such that size 2Ω(n log n) is

necessary for any DFA accepting Up(Ln). ⊓⊔
Finally, it is worth to mention that the lower bounds of the previous two

theorems slightly improve when the number of states is used to measure the size
of DFAs. The next theorem summarizes the lower bounds.

Theorem 6. For every n ≥ 1, there exists a language Ln over an (n + 2)-letter
alphabet accepted by a DFA with (n + 1)2 states, such that 2Ω(n log n) states are

necessary for any DFA accepting Down(Ln). A similar statement is valid for

Up(Ln). ⊓⊔

3.2 Context-Free and Linear Context-Free Languages

In this subsection we are interested in the size of NFAs accepting the Higman-
Haines sets for context-free or linear context-free grammars. Recall that we use
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the total number of occurrences of terminal and nonterminal symbols in the
productions as size measure for grammars. Let G = (N,T, P, S) be a context-
free grammar, where N is the finite set of nonterminals, T is the finite set
of terminals, P ⊆ N × (N ∪ T )∗ is the finite set of productions, and S ∈ N
is the axiom. A context-free grammar G = (N,T, P, S) is linear context free

if P ⊆ N × T ∗(N ∪ {λ})T ∗. Without loss of generality, we assume that the
context-free grammars are always reduced, i.e., that there are no unreachable or
unproductive nonterminals. Moreover, in this section we further assume that the
context-free grammars are in Chomsky normalform, i.e., the productions are of
the form P ⊆ N × (N2 ∪ T ). For linear context-free grammars the normalform
reads as P ⊆ N × (NT ∪ TN ∪ T ).

As in the previous subsection we first show how to construct an NFA for
Down(L(G)). In order to simplify the analysis we assume that the right-hand
sides of the productions are described by NFAs with input alphabet N ∪ T .
We refer to such a grammar as an extended (linear) context-free grammar. Note,
that one can assume that for each extended context-free grammar there is exactly
one NFA for each nonterminal as a right-hand side. The following theorem is a
detailed analysis of the inductive construction presented in [14].

Theorem 7. Let G be a context-free grammar of size n. Then size O(n2
√

2n log n)
is sufficient for an NFA M ′ to accept Down(L(G)). The NFA M ′ can effectively

be constructed.

Proof. First, the context-free grammar G = (N,T, P, S) is transformed into an
extended context-free grammar G′—the details are omitted here. Secondly, we
observe that each nonterminal appears at the left-hand side of at least one pro-
duction, respectively, and at least one nonterminal is rewritten by some terminal
symbol. Therefore, the number of nonterminals is at most ⌊n

2 ⌋.
Next, we inductively proceed as in [14]. For a nonterminal A ∈ N we set

the alphabet VA = (N \ {A}) ∪ T , and define the extended context-free gram-
mar GA = ({A}, VA, PA, A) with PA = {A → M | (A → M) ∈ P}, where M
in (A → M) ∈ P refers to the NFA of the right-hand side of the production.
Further, we set LA = L(GA). Observe, that GA is an extended context-free gram-
mar with only one nonterminal and, thus, one can obtain an NFA MA describing
Down(L(GA)) over the alphabet VA by a subroutine to be detailed below. Then
the induction is as follows: Let G0 = G′. If A is not the axiom S of G0, we can
replace each A-transition occurring in the right-hand side automata of non-
A-productions of G0 with a copy of MA to obtain an extended grammar G1

having one nonterminal less than G0, and Down(L(G1)) = Down(L(G0)).
This construction step can be iterated for at most ⌊n

2 ⌋ − 1 times, yielding ex-
tended context-free grammars G2, G3, . . . , G⌊n

2 ⌋−1, satisfying Down(L(Gi)) =
Down(L(Gi+1)), for 0 ≤ i < ⌊n

2 ⌋, where in the latter grammar G⌊n

2 ⌋−1 the only
remaining nonterminal is the original axiom S of G. Finally, we apply the men-
tioned subroutine to construct the NFA M ′ which results in the finite automaton
accepting the language Down(L(G)).

It remains to describe the above mentioned subroutine and deduce an upper
bound on the size of the automaton M ′. The subroutine works for an extended
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grammar GA = ({A}, VA, {A → M}, A) with only one nonterminal. Then we
distinguish two cases:

1. The production set given by L(M) is linear, i.e., L(M) ⊆ V ∗
A{A, λ}V ∗

A, or
2. the production set given by L(M) is nonlinear.

In the first case, we construct an NFA MT with L(MT ) = L(M) ∩ V ∗
A, which is

obtained by removing all A-transitions from M . Similarly, we build NFAs MP

and MS for the quotients

L(MP ) = {x ∈ V ∗
A | xAz ∈ L(M) for some z ∈ (VA ∪ {A})∗ } and

L(MS) = { z ∈ V ∗
A | xAz ∈ L(M) for some x ∈ (VA ∪ {A})∗ }.

Then it is straightforward to construct an NFA MA having a single start state
and a single accepting state with

L(MA) = Down(L(MP )∗ · L(MT ) · L(MS)∗) = Down(L(GA)).

The number of alphabetic transitions, i.e., non-λ-transitions, in MA is at most
three times that of M . In the second case, i.e., L(M) is nonlinear, we construct
automata MP , MT , MS , and MI , where the former three NFAs are as in the
previous case, and MI accepts the quotient

L(MI) = { y ∈ V ∗
A | xAyAz ∈ L(M) for some x, z ∈ (VA ∪ {A})∗ }.

Again, it is not hard to construct an NFA MA with a single start and a single
accepting state accepting

L(MA) = Down((L(MT ) ∪ L(MP ) ∪ L(MI) ∪ L(MS))∗) = Down(L(GA))

with no more than four times as many alphabetic transitions as M .
The upper bound on the size of an NFA accepting Down(L(G)) is deduced

as follows: For an extended context-free grammar G, let |G|t denote the sum of
the number of alphabet transitions in the right-hand side automata in the pro-
ductions of G. We obtain the recurrence |Gk|t ≤ 4 · (|Gk−1|t)2, for 1 ≤ k < ⌊n

2 ⌋,
describing the substitution step in the kth iteration to construct Gk from Gk−1.
Taking logarithms and setting Hk = log |Gk|t, we obtain a linear recurrence
Hk ≤ 2 · Hk−1 + 2. Solving the linear recurrence, we obtain the inequality
Hk ≤ 2k · H0 + 2k+1 − 2. Since |G0|t ≤ n, we have

H⌊n

2 ⌋−1 ≤ 2⌊n

2 ⌋−1 · H0 + 2⌊n

2 ⌋ − 2 ≤ 2⌊n

2 ⌋−1 · log n + 2⌊n

2 ⌋ − 2.

When replacing the axiom in G⌊n

2 ⌋−1 in the final step, the number of alphabetic
transitions is increased at most by a factor of four, which results in

|G⌊n

2 ⌋|t ≤ 22⌊n

2 ⌋−1·log n+2⌊n

2 ⌋ ≤ 22⌊n

2 ⌋−1·log n+2⌊n

2 ⌋−1·log n ≤ 2
√

2n log n,

for all n ≥ 4. It remains to be shown that for every NFA with n alphabeti-
cal transitions, there is an equivalent NFA with at most O(n) states. An easy
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construction can be used to remove all non-initial states having neither ingo-
ing nor outgoing alphabetical transitions after adding some extra λ-transitions
where necessary. By a simple counting argument, we find that the latter automa-
ton has at most 2n + 1 states. Hence, this shows that the NFA M ′ accepting

Down(L(G)) has size at most O(n · 2
√

2n log n). ⊓⊔

For the lower bound we obtain:

Theorem 8. For every n ≥ 1, there is a language Ln over a unary alphabet gen-

erated by a context-free grammar of size 3n+2, such that size 2Ω(n) is necessary

for any NFA accepting Down(L(G)) or Up(L(G)).

Proof. For every n ≥ 1, consider the finite unary languages Ln = {a2n} gener-
ated by the context-free grammar G = ({A1, A2, . . . , An+1}, {a}, P,A1) with the
productions Ai → Ai+1Ai+1, for 1 ≤ i ≤ n, and An+1 → a. Obviously, gram-
mar G has size 3n + 2. The word a2n

is the longest word in Down(L(G)) and
the shortest word in Up(L(G)). In both cases, any finite automaton accepting
the language takes at least as many states as the length of the word. So, it takes
at least least 2n states and, thus, has at least size 2n. ⊓⊔

We turn our attention to the construction of an NFA accepting Up(L(G)),
for a context-free grammar G. To this end, we define the basis of a language as
follows: A word w ∈ L is called minimal in L if and only if there is no different
v ∈ L with v ≤ w. The set of minimal elements in L is called a basis of the
language Up(L). Observe that any shortest word in L is minimal in L, and any
such word must therefore be part of the basis. In fact, Higman’s Lemma [9]
says that for any arbitrary language L there exists a natural number n, which
depends only on L, such that Up(L) =

⋃

1≤i≤n Up({wi}), for some words wi ∈ L
with 1 ≤ i ≤ n. Sometimes the result is called the finite basis property. For the
construction of an NFA accepting Up(L(G)), where G is a context-free grammar
with terminal alphabet A, we proceed as follows:

1. Determine the basis B ⊆ A∗ of the language Up(L(G)) with the algorithm
presented in [14].

2. Construct an NFA M accepting language B, and apply the construction
given in the previous subsection to obtain an NFA M ′ accepting Up(B),
which equals the language Up(L(G)) by the finite basis property.

The first step basically consists in inductively computing B starting from B0 = ∅,
and Bi+1 is obtained by extending Bi by a shortest word w in L(G)\Up(Bi), i.e.,
setting Bi+1 = Bi∪{w}. This process is repeated as long as (L(G)\Up(Bi)) 6= ∅.
If this condition is met, the set B equals the last extended Bi. Since context-free
languages are closed under set difference with regular sets, the set B can be
effectively constructed.

Theorem 9. Let G be a context-free grammar of size n. Then an NFA M ′ of

size O(
√

n22n log n) is sufficient to accept Up(L(G)). The NFA M ′ can effectively

be constructed.
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In the remainder of this section we concentrate on linear context-free lan-
guages.

Theorem 10. Let G be a linear grammar of size n. Then an NFA M ′ of

size O
(√

2n2+
(3n+6)

2 log n−(4+log e)n
)

is sufficient to accept Down(L(G)). The

NFA M ′ can effectively be constructed.

Proof. Let G = (N,T, P,A1) with N = {Ai | 1 ≤ i ≤ m } be a linear
context-free grammar. The basic idea for the construction of M ′ is to inspect
the derivation trees of G and to modify the underlying grammar such that any
self-embedding derivation of the form A ⇒∗ xAz, for some A ∈ N and x, z ∈ T ∗,
is replaced by a derivation A ⇒∗ xA and A ⇒∗ Az, while the respective gen-
erated languages have the same Down-sets. In other words, the derivation that
produces the “coupled” terminal words x and z is made “uncoupled” by a right-
linear and a left-linear derivation. In order to make the construction work, one
has to take care about these self-embedded derivation parts in an appropriate
manner. For a formal treatment of the construction we need some notation.

Let A1 ⇒∗ w be a derivation of w ∈ T ∗. Then the inner nodes of the
derivation tree form a path p = A1Ai1Ai2 · · ·Aik

. We can group the inner nodes
as follows: We call a subpath of p that represents a self-embedded derivation
with nonterminal A, i.e., which begins and ends with the same nonterminal A,
an A-block. A splitting of p into blocks is an ordered set B of blocks such that

1. any block in p is a subpath of exactly one element in B,
2. there is at most one A-block for each nonterminal A ∈ N .

A splitting always exists, as the first condition can be ensured by adding blocks
to B as long as necessary. Afterwards we can enforce the remaining conditions
by merging blocks. The order of the set B is given naturally by the occurrence
of blocks along the path. For such a splitting, we call a subpath connecting two
consecutive blocks an (A,B)-nonblock, if the first is an A-block and the second
one a B-block. By convention, the borders A and B are part of the nonblock. If
the first or the last nonterminal of the path are not part of blocks, we agree that
the paths connecting the ends to the first and last block are also nonblocks. A
simple example explaining our terminology is depicted in Figure 2, where it is
shown that a splitting is not necessarily unique.

Next, for each nonterminal A ∈ N we build NFAs MA,P and MA,S for the
quotients

L(MA,P ) = {x ∈ T ∗ | A ⇒∗ xAz for some z ∈ T ∗ } and

L(MA,S) = { z ∈ T ∗ | A ⇒∗ xAz for some x ∈ T ∗ }.

Then it is straightforward to construct an NFA MA having a single start state
and a single accepting state such that L(MA) is the Down-set of the set of all
partial derivations corresponding to an A-block, i.e.,

L(MA) = Down(L(MA,P )∗ · A · L(MA,S)∗).
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The number of states in MA is at most 2|N | ≤ n, and it contains a single A-
transition. Moreover, for every A,B ∈ N we build NFAs MA,I and M(A,B),I

taking care of the terminating derivation part and the nonblocks, namely

L(MA,I) = {y ∈ T ∗ | A ⇒∗ y is an acyclic derivation, y ∈ T ∗} and

L(M(A,B),I) = {xBz ∈ T ∗NT ∗ | A ⇒∗ xBz is an acyclic derivation, x, z ∈ T ∗}.

Here a derivation is said to be acyclic, if no nonterminal occurs more than
once in the derivation. The Down-set of all partial derivations corresponding to
some (A,B)-nonblock is given by L(M(A,B)) = Down(L(M(A,B),I)), the Down-
set of the terminating derivation part by L(M(A)) = Down(L(M(A,I))). We
note two features of L(M(A,B),I): First, all words in the language are at most of

length |N |, and secondly, by [2, Lemma 4.3.2], it contains at most 2|P |−1 words.
Then the construction given in [7] yields an NFA M(A,B),I with at most 3√

2
·nn

4

states and at most 2n−1 many B-transitions accepting this language, as |Σ| ≤ n
and |N | as well as |P | cannot exceed n/2. The same bound on the number of
states applies to MA,I , and due to Lemma 2 and the constructions of NFAs for
Down-sets of NFA languages, the bounds on states and transitions apply also
to M(A,B) and M(A).

Finally, for every splitting B = {Ai1 , Ai2 , . . . , Aim
} containing m blocks, we

obtain an NFA accepting the Down-set of all derivations A1 ⇒∗ w whose trees
admit a B-splitting by iterated substitution of transitions by NFAs. We start
with the terminating derivation part, i.e, the NFA M(Aim

) with no more than

H0 = 3√
2
·nn

4 states. Next we proceed in cycles. In each cycle k, two substitution

phases are performed. First, the current NFA, say with Hk states, replaces the
sole (Aim−k)-transition of the NFA MAim−k

. This results in at most Hk+n states.
Secondly, all (Aim−k)-transitions of the NFA M(Aim−k−1,Aim−k) are replaced by
the NFA constructed in the first phase. The result is an NFA with at most
2n−1(Hk +n)+H0 states. Clearly, the construction is completed after m cycles.

A1

A2

A2

A3

A3

A1

A4

A2

A3

A2

A7

A3

A5

A3

A6

A1

A3

A3

Fig. 2. Two splittings for the path p = A1, A4, A2, A3, A2, A7, A3, A5, A3, A6; blocks
are gray shaded and the derivation is drawn by a curled path, while nonblocks are
white and their derivation is drawn by a straight line.
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For the number of states, we have to solve recurrence Hm = 2n−1(Hm−1+n)+H0

with H0 = 3√
2
· nn

4 . Unrolling yields the series

Hm = H0 + (H0 + n)

m
∑

i=1

(2n−1)i = H0 + (H0 + n)
2(n−1)(k+1) − 1

2n−1 − 1
− 1.

Since m + 1 ≤ |N | ≤ n/2, this is less than or equal to

H0 + (H0 + n)
2

(n−1)n

2

2n−2
≤ H0 + (H0 + n)4

2
n
2

2

2
3n

2

∈ O

(

n
n

4 2
n
2

2

2
3n

2

)

= O
(√

2n2+ n

2 log n−3n
)

.

An important observation is that this automaton also accepts the Down-set
of all derivations whose trees admit some splitting in Down(B). So, it suffices
to consider |N |! relevant different splittings. Therefore, the number of states of

the NFA M ′ accepting Down(L(G)) is at most O
(

(

n
2

)

!
√

2n2+ n

2 log n−3n
)

. This

implies a size of O
(

(

n
2

)

!
√

2n2+
(n+4)

2 log n−3n
)

. Finally, Stirling’s approximation

yields O
((

n
2

)

!
)

= O
(√

n
(

n
2e

)
n

2

)

= O
(√

2log n
√

2n log n
√

2−n(1+log e)
)

and, thus,

an upper bound of

O

(√
n
( n

2e

)
n

2

√

2n2+
(n+4)

2 log n−3n

)

= O

(
√

2n2+
(3n+6)

2 log n−(4+log e)n

)

.

⊓⊔
In order to show the lower bound we use the finite witness language Ln =

{wwR | w ∈ {a, b}n }, which can be generated by a linear context-free grammar
G = ({Ai, A

′
i, A

′′
i | 1 ≤ i ≤ n }, {a, b}, P,A1) with the productions Ai → aA′

i,
A′

i → Ai+1a, Ai → bA′′
i , A′′

i → Ai+1b, for 1 ≤ i < n, and An → aA′
n, A′

n → a,
An → bA′′

n, A′′
n → b. Since any NFA accepting Ln needs at least 2n states—see,

e.g., [6]—the next theorem reads as follows. Observe, that the lower bound also
holds for the up-set problem.

Theorem 11. For every n ≥ 1, there is a linear context-free language Ln over a

binary alphabet generated by a linear context-free grammar of size 12n− 2, such

that size 2Ω(n) is necessary for any NFA accepting Down(L(G)) or Up(L(G)).
⊓⊔

For the size of Up(L(G)), for some linear context-free grammar G of size n, we
argue as follows: The basis B of Up(L(G)) contains only words whose lengths are
at most n. Then by similar arguments as in the proof of Theorem 9 we obtain
the following result, which is much better than that for general context-free
grammars.

Theorem 12. Let G be a linear context-free grammar of size n. Then an

NFA M ′ of size O(
√

2(n+2) log n) is sufficient to accept Up(L(G)). The NFA M ′

can effectively be constructed. ⊓⊔
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4 Conclusions

Several questions about the size of Higman-Haines sets remain unanswered. We
mention a few of them: Can one obtain better matching upper and lower bounds
for context-free and linear context-free languages? Similarly, which are better
bounds for deterministic finite automata?

There are some other interesting and important subfamilies of the context-
free languages, e.g., unary, bounded, deterministic or turn-bounded context-
free languages. The sizes of the corresponding Higman-Haines sets are worth
studying.

Our investigations are based on the special case of the scattered subword
relation. Since the result of Higman and Haines only needs a well-partially-order
one may ask similar questions for other well-partially-orders as, e.g., for the
Parikh subword quasi-order or for monotone well-quasi-orders—see [3, 11] for
further results about these well-quasi-orders.
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