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Abstract. We investigate the computational complexity of the nonde-
terministic finite automaton (NFA) minimization problem for finite and
unary regular languages, if the input is specified by a deterministic fi-
nite state machine. While the general case of this problem is PSPACE-
complete [13], it becomes theoretically easier when restricted to the afore-
mentioned language families. It is easy to see that in both cases, an upper
bound is ΣP

2 , the second level of the Polynomial Hierarchy. Concerning
a respective lower bound, we show that the minimization problem for
NFAs accepting finite languages is hard for the complexity class DP,
which includes both NP and coNP, and is a subset of ΣP

2 . Moreover,
we show that the corresponding problem for unary regular languages in
general, i.e., not limited to the cyclic case, can be approximated in poly-
nomial time within a performance ratio of O(

√
n), where n is the number

of states of the given deterministic finite state machine. This generalizes
a result obtained recently for cyclic unary languages [6]. We also show
that one cannot approximate the unary NFA minimization problem with
o(n), if the input is an NFA, which is an optimal bound, unless P = NP.

1 Introduction

Finite automata are one of the oldest and most intensely investigated compu-
tational models. It is well known that deterministic and nondeterministic finite
automata are computationally equivalent, and that nondeterministic finite au-
tomata can offer exponential state savings compared to deterministic ones [19].
On the other hand, minimizing deterministic finite automata (DFAs) can be car-
ried out efficiently, whereas the state minimization problem for nondeterministic
finite state automata (NFAs) is PSPACE-complete, even if the regular lan-
guage is specified as a DFA [13]. This theoretical problem is quite relevant for
applications where finite automata are involved, such as computational biology
or natural language processing [4, 20], because it measures the amount of space
needed to store the devices under consideration in memory. Common to most
applications is that they have to deal with huge masses of data. The situation is



even worse, because recently it was shown that the NFA minimization problem
cannot even be approximated within o(n), unless P = PSPACE, if the input is
given by an NFA with n states [7]. That is, no polynomial-time algorithm can
always determine an approximate solution of size o(n) times the optimum size.
If the input is a DFA the problem remains inapproximable within a factor of at
least n1/5−ε, for all ε > 0, unless P = NP [9].

This immediately prompts the question whether the complexity of the mini-
mization problem drops if restricted types of regular languages such as finite or
unary regular languages are considered. Recently in [15] it was shown that for
restricted types of NFAs, in particular for models where the nondeterministic
moves are limited, the minimization problem remains intractable, i.e., is at least
NP-hard. What concerns the complexity of minimization for the aforementioned
restrictions to finite and unary regular languages?

For finite languages, NFA minimization can be done by the following al-
gorithm: A nondeterministic Turing machine with an NFA equivalence oracle
for finite languages can guess an NFA with at most k states and ask the oracle
whether the guessed automaton is equivalent to the input automaton and accept
if and only if the oracle answer is yes. Since NFA equivalence for finite languages
is coNP-complete [21] the minimization problem belongs to ΣP

2
, regardless of

whether a deterministic or nondeterministic finite state device is given. The best
lower bound, to our knowledge, is NP-hardness, which follows from [1]. The
problem of minimizing a given unary NFA is coNP-hard [21] and similarly as
in the case of finite languages contained in ΣP

2
, and the number of states of a

minimal NFA equivalent to a given unary cyclic DFA cannot be computed in
polynomial time, unless NP ⊆ DTIME(nO(log n)), as shown in [12]. Note that in
the latter case the corresponding decision version belongs to NP. Inapproxima-
bility results for the problem in question have been found recently, if the input is
a unary NFA: The problem cannot be approximated within

√
n/(lnn) [6], and if

we require in addition the explicit construction of an equivalent NFA, the inap-
proximability ratio can be raised to n1−ε, for every ε > 0, unless P = NP [7]. On
the other hand, if a unary cyclic DFA with n states is given, the nondetermin-
istic state complexity of the considered language can be approximated within a
factor of O(log n). In this paper we contribute to the known results as follows:

1. For unary languages we improve some of the aforementioned (in)approxi-
mability results, which only hold for the cyclic case, to unary languages in
general. In particular, we prove that for a given an n-state NFA accepting
a unary language L, it is impossible to approximate the nondeterministic
state complexity of L within o(n), unless P = NP. Observe that this bound
is tight. In contrast, it is shown that the NFA minimization problem can be
constructively approximated within O(

√
n), where n is the number of states

of the given DFA. Here by “constructively approximated” we mean that we
can build the NFA, instead of only approximately determining the number
of states needed. Note that in the latter result we solve an open problem
stated in [6, 13] on the complexity of converting a DFA to an approximately
optimal NFA in the case of unary languages.



2. In the case of finite languages we improve the NP-hardness of the NFA
minimization problem to DP-hardness, even if the input is a DFA accepting
a finite language. The complexity class DP includes both NP and coNP,
and is a subset of ΣP

2
. This nicely contrasts with a recent result [9] on the

NP-completeness of NFA minimization for finite languages given by truth
tables. Hence, the NFA minimization problem for finite languages with DFAs
as input is more complicated than that with truth tables as input, unless
NP = coNP. Whether this lower bound can be substantially raised to, e.g.,
ΣP

2
-hardness, is left open.

The paper is organized as follows: In the next section we introduce the basic
notions on finite automata and complexity theory. Sections 3 and 4 are devoted
to results on the approximation complexity of the unary NFA minimization
problem. The former section deals with NFAs as input to the problem under
consideration, while the latter treats the case where the input is given as a DFA.
Then in Section 5 the minimization problem for NFAs accepting finite languages
is investigated.

2 Definitions

We assume the reader to be familiar with the basic notions in formal language
and automata theory as contained in [11]. In particular, let Σ be an alphabet
and Σ∗ the set of all words over the alphabet Σ containing the empty word λ.
The length of a word w is denoted by |w|, where |λ| = 0.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ S is the set of
accepting states. The transition function δ is extended to a function from δ : Q×
Σ∗ → 2Q in the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =

⋃

q′∈δ(q,a) δ(q′, w),
for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. A nondeterministic finite automaton A =
(Q, Σ, δ, q0, F ) is deterministic (DFA), if |δ(q, a)| = 1, for every q ∈ Q and
a ∈ Σ. In this case we simply write δ(q, a) = p instead of δ(q, a) = {p}. The
language accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }. Two automata
are equivalent if they accept the same language. For a regular language L, the
deterministic (nondeterministic, respectively) state complexity of L, denoted by
sc(L) (nsc(L), respectively) is the minimal number of states needed by a DFA
(NFA, respectively) accepting L.

In this paper we are interested in the minimization problem for NFAs. This
problem is defined as follows:

– For a given finite automaton A and an integer k, decide whether there exists
an NFA B with at most k states such that L(A) = L(B).

In order to classify this problem we assume the reader to be familiar with some
basic notions of complexity theory, as contained in [18]. In particular we consider
the following well-known sequence of containments: P ⊆ NP ⊆ PSPACE.



Here P (NP, respectively) is the set of problems accepted by deterministic
(nondeterministic, respectively) polynomial time bounded Turing machines, and
PSPACE is the class of languages accepted by deterministic or nondeterministic
Turing machines within polynomial space. Moreover, we introduce the class DP,
called difference polytime, which is the class of languages that can be written
as the difference of two NP languages. Obviously, difference polytime equals
{A ∩ B | A ∈ NP and B ∈ coNP }. The class is located at the second level of
the Boolean hierarchy over NP, and thus a superset of NP and coNP, but
DP ⊆ ΣP

2
. Completeness and hardness for complexity classes are always meant

with respect to deterministic many-one polynomial time reducibilities.
A language L ⊆ Σ∗ is unary if the alphabet is a singleton, i.e., |Σ| = 1.

Without loss of generality we may assume that Σ = {a} in this case. We say
that a DFA (NFA, respectively) accepting a unary language is a unary DFA
(NFA, respectively). It is not difficult to see that a unary DFA consists of a
path, which starts from the initial state, followed by a cycle of one or more
states. Following the convention in [3], the size of a unary DFA is the pair
(λ, µ), where λ ≥ 1 and µ ≥ 0 denote the number of states in the cycle and
in the path, respectively. For unary NFAs a normal form which generalizes that
for DFAs was established in [3]. There a unary NFA consists of a path, which
starts from the initial state, and several cycles, where the last state of the path
branches nondeterministically into one state of each cycle. A unary NFA of this
form is said to be in Chrobak normal form. Naturally, the size notation (λ, µ)
for DFAs carries over to NFAs, where λ ≥ 1 now refers to the number of states
belonging to the cycles, and µ ≥ 0 is defined as above. A unary regular language
is said to be cyclic if and only if it can be accepted by a DFA of size (λ, 0), for
some λ ≥ 1. In that case we say that the language is λ-cyclic. A cyclic language
has minimal period λ if it is λ-cyclic, but not cyclic for any proper divisor of λ.

3 Inapproximability of Unary NFA Minimization for a

given NFA

In this section we give a tight bound on the approximability of the NFA mini-
mization problem for the case where the input is a unary NFA.

Theorem 1. Given an n-state NFA accepting a unary language L, it is impos-
sible to approximate nsc(L) within a factor of o(n), unless P = NP.

Proof. Our proof is an adaptation of the classical proof of the fact that the prob-
lem of determining whether a unary NFA accepts the universal language {a}∗ is
coNP-hard [21]. For convenience and ease of notation, we outline the modified
construction completely, not just the modifications.

This proof is by a reduction from the coNP-complete unsatisfiability prob-
lem for 3SAT-formulae: Given F as the conjunction of clauses C1, C2, . . . , Cm in
the variables x1, x2, . . . , xn, where each clause is the disjunction of at most 3 lit-
erals, it is coNP-complete to determine whether F is unsatisfiable. This problem
remains coNP-hard if we require that no clause has more than one occurrence



of each variable, and that the last clause is of the form Cm = (xn), where xn is
a variable occurring only in Cm. For reasons that will become later obvious, on
this point we differ from the classical reduction. Now the core idea of the original
construction is to find a suitable unary representation of truth assignments in
{0, 1}n for the variables x1, x2, . . . , xn. Let p1, p2, . . . , pn be n distinct primes (to
be fixed later), among which pn is the largest and pn−1 is the second largest one.
Define the function µ : N → N

n by µ(x) = (xmod p1, xmod p2, . . . , xmod pn).
If µ(x) is a n-dimensional vector with 0-1 entries, we call x a representation. Ac-
cording to the Chinese Remainder Theorem [10], every assignment in {0, 1}n has
a unique representation modulo

∏n
i=1 pi, but not every number in this module

represents an assignment in general.
We will define a language LF which is equal to {a}∗ if and only if F is

unsatisfiable. First, let Ri = { ak | k mod pi /∈ {0, 1} }. Then we have

R = { ak | k does not represent an assignment } =

n
⋃

i=1

Ri,

and an NFA accepting this language can be constructed in time O(n · pn) from
the list of primes. Next, observe for a clause C with variables, say, x1, x2, x3,
there is a unique assignment a1, a2, a3 to these variables such that the clause is
not satisfied. Thus the language of all representations x such that µ(x) does not
satisfy C is given by

LC =

3
⋂

i=1

{ ak | k mod pi = ai }.

Also, an NFA accepting LC of size p1·p2·p3 can be constructed in time polynomial
in pn. Finally, we define the language LF as

⋃m
i=1 LCi

∪ R. It can be readily seen
that LF is a cyclic language, and that LF = {a}∗ if and only if F is unsatisfiable.

Given the list of primes and the formula F , we can construct an NFA ac-
cepting LF in time polynomial in pn ·m, whose states are arranged in a union of
cycles. Overmore, if pn is used to represent the special variable xn, then the con-
structed NFA needs only one cycle whose length is a multiple of pn, namely for
the language Rn ∪LCm

, which has period pn. So we can assume that the size of
this automaton is N = pn +O

(

m · p3
n−1

)

. Now we fix the primes p1, p2, . . . , pn−1

to be the first n− 1 primes. By the prime number theorem holds pn−1 ≤ 2n lnn
for n large enough [10], thus these primes can be found in time polynomial in n.
Now comes the second point where we deviate from the classical reduction: We
want to achieve that the size of pn predominates in the size of the constructed
NFA, so we set pn to be the first prime greater than m(pn−1)

3. Bertrand’s Pos-
tulate [10] asserts that pn ≤ 2m(pn−1)

3, and thus pn can also be found in time
polynomial in m ·n. We conclude that for the size of the constructed NFA holds
N = Θ(pn).

Clearly, if F is unsatisfiable, then LF = {a}∗, and nsc(LF ) = 1. For the
other case, the classical construction was analyzed in [6, Lemma 3]. There it
was shown that the minimal period of LF is at least 1

2

∏n
i=1 pi, provided LF is



not universal—the proof was given in the setup where the involved primes to
represent the truth assignments are the first n primes, but the proof is valid for
any set of n distinct primes. As LF is cyclic, it is not hard to prove that its
nondeterministic state complexity is bounded below by the largest prime power
dividing its minimal period, see [12, Corollary 2.1]. Thus nsc(LF ) ≥ pn = Ω(N)
in this case, where N is the number of states of the given NFA.

Now assume there is a polynomial time algorithm approximating the size
of a minimal equivalent unary NFA within o(N), where N is the number of
states of the given NFA. Then this algorithm could be applied to decide whether
nsc(LF ) = o(pn), thus solving a coNP-hard problem in polynomial time, which
implies P = NP. ⊓⊔

The reader should note that the assumption P 6= NP probably cannot be
replaced by a weaker assumption such as P 6= PSPACE. As mentioned in the
introduction the NFA minimization problem belongs to ΣP

2
, and the assumption

P 6= NP is logically equivalent to P 6= ΣP

2
.

4 Approximability of Unary NFA Minimization for a

given DFA

In contrast to the result in the previous section we describe an approximation
algorithm, which, for a given DFA accepting a unary language, constructs in
polynomial time an equivalent NFA whose size is at most quadratic in the size
of the equivalent minimal NFA. A similar result was known for the special case
where the given DFA is cyclic [6], of which our algorithm is an extension. For
the proof of the next theorem, we collect first some known facts about unary
finite automata. The following is a simple consequence of the characterization of
minimal unary DFAs given in [16, Lemma 1]:

Corollary 2. Assume A is a minimal unary DFA of size (λ, µ). Then both λ
and µ are minimal parameters among all DFA accepting L, i.e., there is no
equivalent DFA of size (λ′, µ′) with λ′ < λ or µ′ < µ. ⊓⊔

Moreover, we recall some of the main results relating nondeterministic state
complexity and unary NFAs in Chrobak normal form from [3].

Theorem 3. For every n-state unary NFA, there is an equivalent NFA in
Chrobak normal form of size (n, µ) and an equivalent DFA of size (λ, µ) with

λ = 2O(
√

n log n) and µ = O
(

n2
)

.

Now we are ready to prove the main result of this section:

Theorem 4. There is a polynomial-time algorithm which, given a DFA of size
(λ, µ) accepting a unary language L, constructs an equivalent NFA which has
O

(√
µ + log λ

)

times the size of the minimum state NFA—observe that this ratio

guarantees a size in O
(

nsc(L)2
)

.



Proof. Without loss of generality, we assume that the given DFA is minimal.
Our algorithm first constructs a minimal DFA of size (λ, 0) accepting the residue
language L′ = a−µL, which is cyclic and of minimal period λ. This can be easily
done by “chopping the tail” of the DFA. In [6], it is shown that the problem
under consideration is approximable within O(log λ) in the special case where
the input is a cyclic DFA of period λ. In this way, we can construct an NFA N ′

in Chrobak normal form accepting L′ of size at most ℓ = nsc(L′) · O(log λ) in
time polynomial in the size of the input. By prepending a tail of length µ before
the original start state of N ′, we obtain an NFA N accepting the language L.

Clearly this algorithm runs in polynomial time and the constructed NFA N
accepts L. It remains to argue that the algorithm achieves the desired perfor-
mance ratio. In the case µ = 0, the described algorithm coincides with the
one given in [6] and gives the performance ratio O(log λ). Thus, the claimed
performance ratio is correct in this case. For the case µ > 0, we proceed as
follows: First, we claim that each NFA in Chrobak normal form accepting L
has at least µ states which are not part of any cycle, which we will refer to
as the tail length of the automaton. As the NFA N constructed by the above
algorithm is in Chrobak normal form, is of size (ℓ, µ), and the parameter µ
is minimal among all automata in Chrobak normal form, Theorem 3 implies
that µ = O

(

nsc(L)2
)

= nsc(L) · O
(√

µ
)

. As ℓ = nsc(L′) · O(log λ), Then the

last step in establishing ℓ + µ = nsc(L) · O
(√

µ + log λ
)

is to prove the claim
nsc(L′) = O(nsc(L)). The proofs of both claims make use of Corollary 2 and
Theorem 3. The technical details of the analysis are omitted due to lack of
space. ⊓⊔

For the special case of unary cyclic languages, quite a few facts are known
about the computational complexity of the unary NFA minimization problem
when the input is specified as a DFA. For instance, the problem for this special
case is in NP, but not in P unless NP ⊆ DTIME

(

nO(log n)
)

[12]. In contrast, to
our knowledge, the complexity analysis of the non-cyclic case, stated as an open
problem in [12], remains open and the best known upper bound for it is ΣP

2
, as

detailed in Section 3. Things look quite tough here: Even for the seemingly simple
task of converting a unary NFA into Chrobak normal form, a quasi-polynomial
time algorithm has been given only recently [14].

5 Computational Complexity of Minimal NFA Problems

for Finite Languages

For finite languages, the situation looks similar to the case of non-cyclic unary
languages, at least from the viewpoint of complexity analysis: To our knowl-
edge, the best known lower bound in this case is NP-hardness, which follows
from [1], and the equivalence problem for NFAs accepting finite languages is
coNP-complete [21], thus giving again an immediate upper bound of ΣP

2
. The

next theorem lifts the above mentioned lower bound to DP-hardness.



Theorem 5. The problem of determining for a given DFA accepting a finite
language and an integer k, whether there exists an equivalent NFA having at
most k states is DP-hard.

The proof of this theorem is established in several steps. In the following
we briefly summarize the basic line of attack. Recall that every set in DP is
the intersection of a NP set with a coNP set. However, also note that the
intersection of a NP-hard set and a coNP-hard set is not necessarily DP-hard;
the intersection can even be empty in general. But if these two languages satisfy
certain additional properties, which prevent too much “interference,” we can
prove the sets DP-hard. To establish DP-hardness, we will have to find two sets
of instances of the NFA minimization problem under consideration, one of which
is hard for NP and the other for coNP, and these sets will have to satisfy some
special “non-interference” property. The next task will be to find such suitable
sets. We obtain the NP-hard set by chaining some known reductions:

Lemma 6. There is a polynomial time recognizable set M of pairs 〈A, k〉 such
that

1. A is a DFA accepting a finite language and k an integer, and

2. the nondeterministic state complexity of L(A) is at least k,

3. but the problem of deciding, for given 〈A, k〉 ∈ M , whether nsc(L(A)) is at
most k, is NP-hard.

Note that, while the membership problem for M is in P, the question asso-
ciated with M as stated in Lemma 6(3) is NP-hard.

Proof. The problem of determining whether the edge set of a given bipartite
graph G = (U, V, E) can be covered with at most j bipartite graphs is NP-
complete [17, Theorem 8.1]. The minimum number of bicliques among these
coverings is the bipartite dimension of G and denoted by d(G). The problem
remains NP-hard even for a polynomial time recognizable subset of instances
whose bipartite dimension is guaranteed to be at most j + 1 and in O(log |E|),
see [5, Theorem A.3]. We combine this with a reduction given in [1]: Given such
a bipartite graph G = (U, V, E), set Σ = U ∪V and define the language L ⊆ Σ2

by L = { uv | (u, v) ∈ E }. Then nsc(L) = d(G)+2 and a DFA A accepting L can
be constructed from G in polynomial time. Hence, the pairs 〈A, k〉 with k = j+2
have all of the postulated properties. ⊓⊔

Finding a coNP-hard set with a similar property takes more effort, compared
to above. To our knowledge, coNP-hardness of the problem given below has not
been established yet.

Lemma 7. The problem of determining for a given DFA accepting a finite lan-
guage and an integer k, whether there exists an equivalent NFA having at most k
states is coNP-hard.



Proof. The reduction establishing the hardness result relies on a definition of a
special language L commonly specified by multiple DFAs—recall the construc-
tion described in [8, 13]. We combine this with an adaption of a folk reduction
that shows coNP-hardness for the equivalence problem of two given nondeter-
ministic finite automata accepting finite languages.

Given a Boolean formula F in disjunctive normal form involving variables
x1, x2, . . . , xn and having m clauses, we can construct in polynomial time trim
DFAs A1, A2, . . . , Am such that Ai accepts the set of assignments t = t1t2 . . . tn
satisfying the ith clause. Then

⋃

i L(Ai) = {0, 1}n if and only if F is a tautology,
the latter being a coNP-complete problem.

Without loss of generality, we assume that every DFA Ai has state set
Qi = {qi0, qi1, . . . , qin}, and for each j, there is a word wij of length j such
that Ai is in state qij after reading wij . We also assume that Qi ∩ Qj = ∅
for i 6= j. The language P (i, j) is defined as the set of words which could
be accepted by Ai if qij was redefined as the only accepting state, that is
P (i, j) = {w ∈ {0, 1}≤n | δi(qi0, w) = qij }. We introduce a new symbol ai

for each automaton Ai, and a new symbol bij for each state qij in
⋃m

i=1 Qi. In
addition, we have new symbols c1, c2, . . . cn, and d. Define the language P (i) as
a marked version of the language accepted by Ai: P (i) =

⋃n
j=0[ai · P (i, j) · bij ].

Let Bj = { bij | 1 ≤ i ≤ m }. Then the auxiliary language R is defined as the set

R = ({0, 1, c1}{0, 1, c2} · · · {0, 1, cn}{d})
n
⋃

i=1

({0, 1, c1}{0, 1, c2} · · · {0, 1, ci}Bi).

Lastly, let L =
⋃m

i=1[P (i) ∪ aiL(Ai)] ∪ R ∪ {0, 1}n.
The role of R is to assert that all strings of the form xbij with x ∈ {0, 1}j

are in L, and the marker symbols cj ensure any NFA accepting L needs n − 1
states in addition to those needed to accept

⋃m
i=1[P (i) ∪ aiL(Ai)] ∪ {0, 1}n.

Given A1, A2, . . . , Am, it is easy to construct in polynomial time a partial
DFA with n+1 states accepting {0, 1}n, a partial DFA with n+2 states accept-
ing R, and a partial DFA with 2+m(n+1) states accepting

⋃m
i=1[P (i)∪aiL(Mi)].

By the well-known product construction, a DFA accepting the union of these
three languages can be obtained in polynomial time, and this union equals L.

We will show that the size of the minimal NFA accepting L has in any case at
least k = 2+ m(n + 1)+ n states, and that this lower bound is exact if and only
if F is a tautology. If F is a tautology, then the k-state NFA sketched in Figure 1
accepts L. To give a lower bound on the size of any NFA accepting L, we use
the (extended) fooling set technique [2]: Define the set of pairs S = S1 ∪S2 with

S1 = { (aiwij , bij) | 1 ≤ i ≤ n and 1 ≤ j ≤ m }, and

S2 = { (x, y) | xy = c1c2 . . . cnd },

where wij is any word in P (i, j), for each 1 ≤ i ≤ n and 1 ≤ j ≤ m. We claim
that S is an extended fooling set for L.

It is readily observed that xy ∈ L for all pairs (x, y) ∈ S. Next, we note that
the word aiwijbiℓ is in L if and only if j = ℓ. Of course, if j = ℓ then aiwijbiℓ ∈ L.
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Fig. 1. Sketch of construction for a minimal NFA accepting LF in case F is a tautology.
The drawn two final states labeled pf are actually a single state.

Assume now i 6= ℓ. Since the word begins with ai and ends with biℓ, it is not
in L, or it is in P (i)∪ ai ·L(Ai). It is clear that wij ∈ P (i, j). Any word in P (i)
ending with biℓ is in ai ·P (i, ℓ) · biℓ, so wij ∈ P (i, j)∩P (i, ℓ). But automaton Ai

is deterministic, so P (i, j)∩P (i, ℓ) = ∅ if j 6= ℓ, and thus aiwijbiℓ /∈ L. Thus, all
elements in S1 have the fooling set property.

We turn to the elements in S2: Let w = c1c2 . . . cnd. Obviously, w is in L,
but ww is not. And none of the words aiwijw, or wbij are in L, so we can add
the pairs (ε, w) and (w, ε) to S1 to form a larger fooling set. Next, note that no
proper subword of w is in L, so S2 for itself is also a fooling set for L. To see that
all the remaining pairs in S2 can be added to S1, observe that aiwijy cannot be
in L if y ends with the letter d.

Now assume F is not a tautology, and let t represent a truth value assignment
such that F evaluates to 0. Write t = xy with 0 < |x| < n. We claim that S ∪
{(x, y)} (the union is disjoint) is also a fooling set for L: For sake of contradiction,
assume this is not the case. Then there is (x′, y′) ∈ S such that xy′ and x′y are
both in L. We first rule out the case that (x′, y′) is in S′′. Then xa1b1,1 /∈ L, if
|x| ≥ 1, and a1b1,1y /∈ L, if |y| ≥ 1. Any word in L beginning with c ends either
with f , or bij , for some i and j. Hence, neither cy nor cdy is in L. So (x′, y′) must
be in S′ and of the form (aiwij , bij). Then both aiwijy and xbij are in L. We can



deduce that wijy ∈ L(Ai), since the word aiwijy begins with ai. And x ∈ P (i, j),
since the word xbij ends with bij . Since Ai is deterministic and wij is also in
P (i, j), we have wij ≡L(Ai) x, where ≡L(Ai) is the well-known Myhill-Nerode
equivalence relation [11] for L(Ai). But wijy ∈ L(Ai) implies, by definition of
the equivalence relation, that xy ∈ L(Ai). Thus t = xy is a satisfying assignment
for F , contradicting our original assumption. ⊓⊔

We designed the above reduction in a way such that the involved set of
instances of the minimization problem, apart from being coNP-hard, has a
non-interference property similar to the one given in Lemma 6.

Lemma 8. There is a polynomial time recognizable set N of pairs 〈B, ℓ〉 such
that

1. B is a DFA accepting a finite language and ℓ an integer, and
2. the nondeterministic state complexity of L(B) is at least ℓ,
3. but the problem of deciding, for given 〈B, ℓ〉 ∈ N , whether nsc(L(B)) is at

most ℓ, is coNP-hard. ⊓⊔

Now we are ready to complete the proof of the main theorem of this section.

Proof (of Theorem 5). Without loss of generality, we assume that for each
〈A, k〉 ∈ M and 〈B, ℓ〉 ∈ N , the input alphabets of A and B have an empty inter-
section. Let $ be a new symbol present in neither of the two alphabets. Observe
that then the nondeterministic state complexity of the marked concatenation
L = L(A)$L(B) is precisely the sum of the nondeterministic state complexities
of L(A) and L(B), and a DFA accepting this language can be constructed in
time polynomial in the size of A and B.

Now the problem of determining whether L admits an NFA with at most k+ℓ
states is DP-hard: If nsc(L) ≥ k + ℓ + 1, then by the properties of the sets M
and N established in Lemma 6 and Lemma 8, nsc(L(A)) > k, or nsc(L(B)) > ℓ.
Thus nsc(L) ≤ k + ℓ, if and only if both nsc(L(A)) ≤ k and nsc(L(B)) ≤ ℓ.
As the latter problems are NP-hard and coNP-hard, respectively, the proof is
completed. ⊓⊔
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