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ABSTRACT

We investigate the phenomenon of non-recursive trade-offs between descriptional sys-
tems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds
on their growth rate, and show how to deduce such bounds in general. We also identify
criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive
tradeoffs from effective closure properties of language families on the one hand, and
differences in the decidability status of basic decision problems on the other. We de-
velop a qualitative classification of non-recursive trade-offs in order to obtain a better
understanding of this very fundamental behaviour of descriptional systems.
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1. Introduction

In computer science in general, and also in the particular field of descriptional com-
plexity, we try to classify problems and mechanisms according to different aspects of
their tractability. Often the first distinction we make in such a classification is to check
whether a problem admits an effective solution at all. If so, we usually take a closer
look and analyze the inherent complexity of the problem. But undecidable prob-
lems can also be compared to each other, using the toolkit provided by computability
theory. Here, it turns out that most naturally occurring problems are complete at
some level of the arithmetic (or analytic) hierarchy. This has been a rather successful
approach to understand the nature of many undecidable problems we encounter in
various computational settings. As for decision problems, there are conversion prob-
lems between different models that cannot be solved effectively. Indeed, they evade
solvability a forteriori because the size blow-up caused by such a conversion cannot
be bounded above by any recursive function. This phenomenon, nowadays known as
non-recursive trade-off, was first observed by Meyer and Fischer [20] between nonde-
terministic pushdown automata and finite automata. Previously, it had been known
that every deterministic pushdown automaton accepting a regular language can be
converted into an equivalent finite automaton of at most triply-exponential size. In
contrast, Meyer and Fischer showed that if we replace “deterministic pushdown au-
tomaton” with “nondeterministic pushdown automaton,” then the maximum size
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blow-up can no longer be bounded by any recursive function. Since that time there
has been a steadily growing list of results where this phenomenon has been observed,
for example, [2, 6, 9, 10, 11, 14, 15, 17, 19, 25, 26, 28]. In [16] a survey is given that
also presents a few general proof techniques for proving such results. While it seems to
be clear that non-recursive trade-offs usually sprout at the wayside of the crossroads
of (un)decidability, in many cases proving such trade-offs apparently requires ingenu-
ity and careful automata constructions. While apparently we cannot get rid of this
altogether, here we identify general criteria where non-recursive trade-offs can be di-
rectly read off, provided certain basic (un)decidability results about the descriptional
systems under consideration are known. The present work aims at making the first
steps in paralleling the successful development of the abstract theory of languages,
and in building a theory with unified proofs of many non-recursive trade-off results
appearing in the literature. Besides new proof techniques in this domain, the present
work also aims to provide a finer classification of such non-recursive trade-offs, in a
similar vein to what has been done in the classification of undecidable problems.

The paper is organized as follows: in the next section we introduce the necessary
notation on descriptional systems and computability theory. Then in Section 3 we
prove bounds on the trade-off function f that serves as a least upper bound for
the increase in complexity when changing from a descriptor in S1 to an equivalent
descriptor in S2. Here, it turns out that the complexity of the problem of the S2-
ness of S1 descriptors influences the growth rate of f . Moreover, in Section 4 we
develop easy-to-apply proof schemes that allow one to deduce non-recursive trade-offs
by closure properties of language families and differences in the decidability status
of basic decision problems. Finally, in Section 5 we consider the question, which
functions can serve as lower and upper bounds when changing from one descriptional
systems to another one and prove that every reasonable function may appear in the
order of magnitude.

2. Preliminaries and Definitions

The empty word is denoted by λ and for the length of w we write |w|. We use ⊆ for
inclusions and ⊂ for strict inclusions.

We first establish some notation for descriptional complexity. In order to be general,
we formalize the intuitive notion of a representation or description of a family of
languages. A descriptional system is a collection of encodings of items where each
item D represents or describes a formal language L(D). The encodings can be viewed
as strings over some alphabet. A natural property of descriptional systems is that
their items are finite. In the following, we call the items descriptors, and identify the
encodings of some language representation with the representation itself. It almost
suggested itself that the underlying alphabet alph(D) over which D represents a
language can be read off from the descriptor D.

Definition 1 A descriptional system S is a set of finite descriptors, such that
each descriptor D ∈ S describes a formal language L(D), and the underlying al-
phabet alph(D) over which D represents a language can be read off from D. The
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family of languages represented (or described) by some descriptional system S is
L (S) = {L(D) | D ∈ S }. For every language L, the set of its descriptors in the
system S is S(L) = {D ∈ S | L(D) = L }.

We say that a descriptional system S is recursive (recursively enumerable), if for
each descriptor D ∈ S the language L(D) is recursive (recursively enumerable). More-
over, if there exists an effective procedure to convert D into a Turing machine that
decides (semi-decides) L(D), then the descriptional system is said to be constructively
recursive (constructively recursively enumerable).

Now we turn to measure the descriptors. From the viewpoint that a descriptional
system is a collection of encoding strings, the length of the strings is a natural measure
of size. But in order to obtain a more general framework we consider a complexity
measure for S to be a total, recursive mapping c : S → N.

Definition 2 Let S be a descriptional system with complexity measure c. If there
is a total, recursive function g : N × N → N such that the length of D is bounded
from above by g(c(D), |alph(D)|), for all D ∈ S, then c is said to be an s-measure.
Moreover, if additionally for any alphabet A, the set of descriptors in S describing
languages over A is recursively enumerable in order of increasing size, then c is said
to be an sn-measure.

There exists an sn-measure for a descriptional system S if and only if there is
an s-measure and the membership problem D ∈ S is decidable. Whenever we con-
sider the relative succinctness of two descriptional systems S1 and S2, we assume the
intersection L (S1) ∩L (S2) to be non-empty.

Definition 3 Let S1 be a descriptional systems with complexity measure c1, and S2 be
descriptional systems with complexity measure c2. A total function f : N → N, is said
to be an upper bound for the increase in complexity when changing from a descriptor
in S1 to an equivalent descriptor in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2) there
exists a D2 ∈ S2(L(D1)) such that c2(D2) ≤ f(c1(D1)).

If there is no recursive upper bound, the trade-off is said to be non-recursive.
In other words, there are no recursive functions serving as upper bounds. That is,
whenever the trade-off from one descriptional system to another is non-recursive,
one can choose an arbitrarily large recursive function f but the gain in economy of
description eventually exceeds f when changing from the former system to the latter.

We are interested in classifying non-recursive trade-offs qualitatively. As it will turn
out, the S2-ness of S1 descriptors, that is, the problem given a descriptor D1 ∈ S1

does the language L(D1) belong to L (S2), plays a central role in this task. We
assume the reader to be familiar with the basics of recursively enumerable sets and
degrees as contained in [23]. In particular we consider the arithmetic hierarchy, which
is defined as follows:

Σ1 = {L | L is recursively enumerable },
Σn+1 = {L | L is recursively enumerable in some P ∈ Σn },



4 H. Gruber, M. Holzer, M. Kutrib

for n ≥ 1. Here, a language L is said to be recursively enumerable in some P if there is
a Turing machine with oracle P that semi-decides L. Let Πn be the complement of Σn,
that is, Πn = {L | L is in Σn }. Moreover, let ∆n = Σn ∩ Πn, for n ≥ 1. Observe
that ∆1 = Σ1 ∩ Π1 is the class of all recursive sets. Completeness and hardness are
always meant with respect to many-one reducibilities ≤m, if not otherwise stated.
Let K denote the halting set, that is, the set of all encodings of Turing machines
that accept their own encoding. For any set P define P ′ = KP to be the jump or
completion of P , where KP is the P -relativized halting set, which is the set of all
encodings of Turing machines with oracle P that accept their own encoding, and
define P (0) = P and P (n+1) = (P (n))′, for n ≥ 0. By Post’s Theorem we have
that ∅(n) is Σn-complete (∅(n) is Πn-complete) with respect to many-one reducibility,
for n ≥ 1, where ∅(n) is the n-th jump of ∅. Moreover, note that (1) L ∈ Σn+1 if
and only if L is recursively enumerable in ∅(n) and (2) L ∈ ∆n+1 if and only if L
is recursive in, or equivalently Turing reducible to, the jump ∅(n). In this case we
simply write L ≤T ∅(n), where ≤T refers to Turing reducibility. In the following we
also use the above introduced framework on Turing machines and reductions in order
to compute (partial) functions.

A more revealing characterization of the arithmetic hierarchy can be given in terms
of alternation of quantifiers. More precisely, a language L is in Σn, for n ≥ 1, if and
only if there exists a decidable (n + 1)-ary predicate R such that

L = {w | ∃y1 ∀y2 ∃y3 · · · Q yn : R(w, y1, y2, . . . , yn) },

where Q equals ∃ if n is odd, and Q equals ∀ if n is even. The characterization for
languages in Πn, for n ≥ 1 is similar, by starting with a universal quantification and
ending with an ∀ quantifier, if n is odd, and an ∃ quantifier, if n is even.

3. Bounds for Non-Recursive Trade-Offs

In this section we classify non-recursive trade-offs by given upper and lower bounds.
It will turn out, that whenever a non-recursive trade-off between descriptional sys-
tems S1 and S2 exists, its (upper) bound is induced by the property of verifying
the S2-ness of an S1 descriptor, that is, the problem of determining, whether for a
given descriptor D ∈ S1 the language L(D) belongs to L (S2). In order to make this
more precise we need the following theorem.

Theorem 4 Let S1 and S2 be two descriptional systems. The problem of determining
for a given descriptor D1 ∈ S1 whether the language L(D1) belongs to L (S2), that is,
the S2-ness of S1 descriptors, can be solved in Σ3, if both S1 and S2 are constructively
recursively enumerable. When both systems are constructively recursive, the problem
can be solved in Σ2.

Proof. The problem to determine whether for a given descriptor D1 ∈ S1 the language
L(D1) belongs to L (S2) is equivalent to

∃D2 ∈ S2 ∀w ∈ A∗ : w ∈ L(D1) ⇐⇒ w ∈ L(D2),
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where A = alph(D1) = alph(D2) is the input alphabet of the devices under con-
sideration. If both S1 and S2 are constructively recursive, the logical formula
w ∈ L(D1) ⇐⇒ w ∈ L(D2) is already a decidable 3-ary predicate, since one
can convert both descriptors D1 and D2 into Turing machines that decide the lan-
guages L(D1) and L(D2), respectively. Hence, the problem can be solved in Σ2.

If at least one descriptional system is not constructively recursive (but construc-
tively recursively enumerable), we argue as follows: We rewrite the above characteri-
zation of the problem by

∃D2 ∈ S2 ∀w ∈ A∗ : [w ∈ L(D1) =⇒ w ∈ L(D2)] ∧ [w ∈ L(D2) =⇒ w ∈ L(D1)],

and replace the implications equivalently by

∃D2 ∈ S2 ∀w ∈ A∗ : [w /∈ L(D1) ∨ w ∈ L(D2)] ∧ [w /∈ L(D2) ∨ w ∈ L(D1)].

Then observe that w ∈ L(D1) (w /∈ L(D1), respectively) can be verified if there is a
time bound t (for every time bound t, respectively) such that the word w is accepted (is
not accepted, respectively) by M1 in at most t steps. Here M1 is the equivalent Turing
machine effectively constructed from D1. A similar statement holds for w ∈ L(D2)
and w /∈ L(D2). Moving these quantifiers to the front by the Kuratowksi-Tarski
algorithm [23] results in a Σ3 characterization using a 4-ary decidable predicate for
the problem in question. Thus, the problem can be solved in Σ3. 2

A closer look at the previous proof reveals that equivalence between descriptors
from S1 and S2 can be solved in Π1 if both descriptional systems are constructively
recursive. This equivalence problem belongs to the class Π2 if both systems are
constructively recursively enumerable. Thus, the upper bound on the equivalence
problem is one less in the level of unsolvability than the S2-ness of S1 descriptors.

Next we deduce an upper bound on the trade-off between two descriptional systems.

Theorem 5 Let S1 and S2 be two descriptional systems, c1 be an sn-measure for S1

and c2 be a measure for S2. If both S1 and S2 are constructively recursively enumer-
able, then there is a total function f : N → N that serves as an upper bound for the
increase in complexity when changing from a descriptor in S1 to an equivalent de-
scriptor in S2, satisfying f ≤T ∅′′′. When both systems are constructively recursive,
the function f can be chosen to satisfy f ≤T ∅′′.

Proof. We only prove the statement for the case where both descriptional systems
are constructively recursive; the proof in case where both systems are constructively
recursively enumerable follows along similar lines. In what follows we describe a
Turing machine with ∅′′ oracle that computes a total function f that may serve as an
upper bound for the increase in complexity when changing from a descriptor in S1 to
an equivalent descriptor in S2.

Let n ∈ N be given. First determine the finite set c−1
1 (n) of S1-descriptors, which

can be effectively computed since c1 is an sn-measure, that is, the set of descriptors
in S1 is recursively enumerable in order of increasing size. Then for each D1 ∈ c−1

1 (n)
we proceed as follows: If L(D1) is in L (S2), then we determine a D2 ∈ S2 with
L(D2) = L(D1) and store c2(D2) in a list. By the previous theorem and the fact
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that ∅(n) is Σn-complete (∅(n) is Πn-complete) the question whether L(D1) ∈ L (S2)
can be answered by an ∅′′ oracle. In case the answer is yes, we recursively enumerate
the descriptors in S2 until we find one descriptor that is equivalent to L(D1). Here the
equivalence between descriptors from S1 and S2 is checked by a query to an ∅′ oracle,
which is one less in jump as the one used to verify the condition L(D1) ∈ L (S2)—see
the remark after the previous theorem on the equivalence problem. This enumeration
procedure terminates since we already know that L(D1) ∈ L (S2).

Finally, we also store the input value n in the list, and compute the maximum of all
list elements, which can effectively be done since the list has only finitely many entries.
This value is assigned to f(n). By construction, the function f is total and serves
as an upper bound for the increase in complexity when changing from a descriptor
in S1 to an equivalent descriptor in S2. Moreover, since the described algorithm
always terminates, we have shown that the function f is recursive in ∅′′—our Turing
machine asks queries to an ∅′′ and ∅′ oracle, but since the set ∅′ is strictly less in
the levels of unsolvability one can simulate these queries by appropriate ∅′′ questions.
This shows the stated claim. 2

What about lower bounds on the trade-off function f? In fact, we show that there
is a relation between the function f and the equivalence problem between S1 and S2

descriptors, in the sense that, whenever the former problem becomes easy, the latter
is easy too.

Theorem 6 Let S1 and S2 be two descriptional systems, c1 be a measure for S1, c2

be an sn-measure for S2, and f : N → N be a total function that serves as an upper
bound for the increase in complexity when changing from a descriptor in S1 to an
equivalent descriptor in S2. Then we have:

1. If both S1 and S2 are constructively recursively enumerable and f ≤T ∅′′, then
the S2-ness of S1 descriptors is recursive in ∅′′.

2. If both descriptional systems are constructively recursive and f ≤T ∅′, then the
S2-ness of S1 descriptors is recursive in ∅′.

Proof. We only prove the statement for the case where both descriptional systems
are constructively recursive; the proof in case where both systems are constructively
recursively enumerable follows along similar lines. We construct a Turing machine
with ∅′ oracle that decides the S2-ness of S1 descriptors.

Let D1 from the descriptional system S1 be given. Since the total function f is an
upper bound for the increase in complexity when changing from a descriptor in S1

to an equivalent descriptor in S2 we first compute m = f(c1(D1)). For this purpose
queries to an ∅′ oracle are needed. In fact, the Turing machine that realizes the Turing
reduction from function f to ∅′ is used as a sub-routine here. Since the first condition
defining sn-measures guarantees that the set { c−1

2 (k) | k ≤ m } of S2-descriptors is
finite, the set can be determined by a Turing machine in a finite number of steps.
Then for each of these descriptors we check by asking an ∅′ oracle whether they
are equivalent to D1—note that equivalence for S1 and S2 descriptors can be verified
in Π1 and hence by questions to an ∅′ oracle. If at least one equivalent S2-descriptor is
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found the Turing machine halts and accepts; otherwise the machine halts and rejects.
This shows that the S2-ness of S1 descriptors is recursive in ∅′, since the constructed
Turing machine always halts. 2

Now we are ready to show that only two types of non-recursive trade-offs within the
recursively enumerable languages exist! First consider the context-free grammars and
the right-linear context-free grammars (or equivalently finite automata) as descrip-
tional systems, where their length, that is, the number of symbols of their encoding,
is used as natural complexity measure. Clearly, this measure is an sn-measure. Thus,
we want to consider the trade-off between context-free languages and regular lan-
guages. In [20] it was shown that this trade-off is non-recursive. By Theorem 5, one
can choose the upper bound function f such that f ≤T ∅′′. On the other hand, if
f ≤T ∅′, then by Theorem 6 we deduce that checking regularity for context-free gram-
mars is recursive in ∅′ and hence belongs to ∆2. This is a contradiction, because in [4]
this problem is classified to be Σ2-complete. So, we obtain a non-recursive trade-off
somewhere in between ∅′′ and ∅′, that is, f ≤T ∅′′ but f 6≤T ∅′.

In order to obtain higher growth rates on the upper bound function f , we have
to go beyond context-free languages. When considering the trade-off between the
descriptional system of Turing machines and finite automata we are led to the follow-
ing situation where, again, we measure the descriptional complexity by their lengths.
Since one of the descriptional systems is not recursive but constructively recursively
enumerable, the function f can be be chosen to satisfy f ≤T ∅′′′ by Theorem 5,
but f cannot be simpler than ∅′′ with respect to Turing reducibility since otherwise
regularity for recursively enumerable languages would belong to ∆3, which contra-
dicts the Σ3-completeness of this problem [4]. So, we obtain a non-recursive trade-off
somewhere in between ∅′′′ and ∅′′, that is, f ≤T ∅′′′ but f 6≤T ∅′′.

Our previous considerations can be summarized in a proof scheme for non-recursive
trade-offs. The statement reads as follows.

Theorem 7 Let S1 and S2 be two descriptional systems, c1 be a measure for S1,
and c2 be an sn-measure for S2. Then the trade-off between S1 and S2 is non-recursive,
if one of the following two cases applies:

1. If both S1 and S2 are constructively recursively enumerable and the S2-ness of
S1 descriptors is at least Σ3-hard, or

2. if both descriptional systems are constructively recursive and the S2-ness of S1

descriptors is at least Σ2-hard.

Here hardness is meant with respect to many-one reducibility.

Proof. We only prove the case when both descriptional systems are constructively
recursive. The other case follows by similar arguments. Assume to the contrary that
the trade-off between S1 and S2 is recursive. Then there is a recursive, total function f
which serves as an upper bound for the increase in complexity when changing from a
descriptor in S1 to an equivalent descriptor in the descriptional system S2. Because f
is a total recursive function we can mimic the proof of Theorem 6 which shows that
in our setting the S2-ness of S1 descriptors is recursive in ∅′. Thus, it belongs to ∆2,
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which contradicts our prerequisites, which states that this problem is Σ2-hard. Thus
function f is non-recursive. 2

Finally, it is worth mentioning that the presented approach to measure non-
recursive trade-offs nicely generalizes to higher degrees of unsolvability than con-
structively recursiveness and constructively recursively enumerability leading to non-
recursive trade-offs of arbitrary growth rate. To this end, one needs to have the
effective conversion of descriptors to Turing machines with oracles in order to cope
with language classes of the arithmetic hierarchy in general. Then the proofs of The-
orems 5 and 6 obviously generalize to this setting as well. The tedious details are left
to the interested reader.

4. Proof Schemes for Non-Recursive Trade-Offs

This section is devoted to the question of how to prove non-recursive trade-offs.
Roughly speaking, most of the proofs appearing in the literature are basically re-
lying on one of two different schemes—see, e.g., [16]. One of these techniques is due
to Hartmanis [9], which he subsequently generalized in [10]. Next we present two
rather abstract methods for proving non-recursive trade-offs. In contrast to previous
schemes, here we only use properties that are known from the literature for many
descriptional systems: these concern the decidability of basic decision problems on
the one hand, and closure properties familiar from the study of abstract families of
languages on the other hand.

To this end, we define effective closure of descriptional systems under language
operations. We illustrate the definition by example of language union: Let S be a
descriptional system. We say S is effectively closed under union, if there is an effective
construction that, given some pair of descriptors D1 and D2 from S, yields a descriptor
from S for L(D1) ∪ L(D2). Effective closure under other language operations is
defined in a similar vein. The system S is effectively closed under intersection with
regular sets, if there is an effective procedure that, given a descriptor D from S and
a regular language R, constructs a descriptor from S describing the set L(D) ∩ R.
A descriptional system is called an effective trio [13], if it is effectively closed under
λ-free morphism, inverse morphism, and intersection with regular languages. If it
is also effectively closed under general morphism, we speak of an effective full trio.
Every trio is also effectively closed under concatenation with regular sets.

The proofs that follow are based on Higman-Haines sets of languages. These are
the closures of a language L under the scattered subword and superword relations.
More formally, let ≤ denote the partial order on words given by the scattered subword
relation, that is, v ≤ w if and only if v = v1v2 . . . vk and w = w1v1w2v2 . . . wkvkwk+1,
for some integer k, where vi and wj are in A∗, for 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1.
Then for a language L ⊆ A∗, the set Down(L) is defined as {x | ∃y ∈ L : y ≤ x },
and the set Up(L) as {x | ∃y ∈ L : x ≤ y }. What makes these sets extremely
useful are the two facts that the Higman-Haines sets of any given set of words are
regular [8, 12], and that the closure properties enjoyed by full trios imply closure
under taking Higman-Haines sets:



On Measuring Non-Recursive Trade-Offs 9

Lemma 8 Let S be an effective trio. Then S is effectively closed under the operation
Up. Furthermore, if S is an effective full trio, then S is also effectively closed under
the operation Down.

Proof. It is well known that trios are closed under substitution with λ-free regular
sets, and that full trios are closed under substitution with regular sets (see, for ex-
ample, [13]). Observe that the proof immediately leads to an effective construction.
For any set L ⊆ A∗, we obtain Up(L) via the λ-free regular substitution given by
a 7→ A∗aA∗ for each a ∈ A, and we obtain the set Down(L) via the substitution
given by a 7→ {λ, a}, for each a ∈ A. 2

The proof of the next theorem is based on the operation Down.

Theorem 9 Let S1 and S2 be two descriptional systems that are effective full trios, S1

be constructively recursively enumerable, c1 be a measure for S1, and c2 be an sn-mea-
sure for S2. If

1. the infiniteness problem for S1 is not semi-decidable and

2. the infiniteness problem for S2 is decidable,

then the trade-off between S1 and S2 is non-recursive.

Before we prove this theorem observe that the full trio conditions imply that
L (S1) ∩ L (S2) ⊇ REG (see, for example, [13]). Here REG denotes the family of
all regular languages.

Proof. Assume to the contrary that the trade-off between S1 and S2 is bounded
by some recursive function f . Then we argue as follows: Let D ∈ S1. Since S1

is an effective full trio, by Lemma 8 one can effectively construct a D′ ∈ S1 sat-
isfying L(D′) = Down(L(D)). Since L(D′) is regular and S2 contains all regular
sets, our assumption implies that there is an equivalent descriptor in S2 of size at
most f(c1(D′)).

With the help of the conditions imposed on S2, we can determine the set F of all
descriptors in S2 of size at most f(c1(D′)) that describe only finite languages. Note in
particular that this set F of descriptors is finite. Furthermore, we can determine the
length k of the longest word contained in any of the languages denoted by descriptors
in F as follows: By effective closure under concatenation with regular sets, and under
intersection with regular sets, we simply search for the largest k such that the language

a∗ · (L(Di) ∩ {w ∈ A∗ | |w| ≥ k }),

which is in L (S2), is still infinite. Here a is an arbitrary alphabet symbol.
Now we make use of the observation from [7] that L(D) is finite if and only if

L(D′) = Down(L(D)) is finite; and infiniteness of the latter can be proved by finding
a word in L(D′) that is larger than k. We construct a Turing machine accepting L(D′)
from D′, and we simulate the Turing machine on all inputs of length at least k by
dove-tailing. If L(D) is infinite, eventually one of these simulations will accept, and
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this semi-decides infiniteness. But this contradicts our assumption, because by Con-
dition (1) the family of descriptors S1 has a non-semi-decidable infiniteness problem.

2

Notice that the above conditions in particular imply that the emptiness problem
for S2 is decidable. A similar proof works if we drop the requirement on S2 being a
full trio and impose instead the following slightly weaker conditions, which are more
bulky to state: first, that it describes all regular sets, second that it is effectively closed
under intersection with regular sets, third it is effectively closed under concatenation
with regular sets, and fourth that emptiness is decidable for S2.

Next we list some applications. Indexed grammars, which appear in the statement
of the next theorem, were introduced in [1], and ET0L systems were studied, for
example, in [24].

Theorem 10 For any applicable s-measures, the following trade-offs are non-
recursive:

1. between Turing machines and finite automata,
2. between Turing machines and (linear) context-free grammars,
3. between Turing machines and ET0L systems, and
4. between Turing machines and (linear) context-free indexed grammars.

Proof. It is well known that the finite automata, the context-free grammars, and the
Turing machines each form an effective full trio [13]. Also the indexed grammars as
well as ET0L systems form an (effective) full trio, as proved in [1] and [24], by means
of effective constructions. That the infiniteness problem for Turing machines is not
semi-decidable is folklore, while infiniteness for the other language families under
consideration is decidable—see the aforementioned references. 2

The proof of our next theorem is based on the operation Up. Here we need not
require that the effective trios are full, but now both must have decidable word prob-
lems.

Theorem 11 Let S1 and S2 be two descriptional systems that are effective trios, S1

be constructively recursively enumerable, c1 be a measure for S1, and c2 be an sn-
measure for S2. If

1. S1 has a decidable word problem but an undecidable emptiness problem, and
2. S2 has a decidable emptiness problem,

then the trade-off between S1 and S2 is non-recursive.

Observe, that the trio conditions imply that the intersection of L (S1) and L (S2)
contains all λ-free regular sets (cf. [13]).

Proof. Assume to the contrary that the trade-off between S1 and S2 is bounded by
some recursive function f . Then we argue as follows: Let D ∈ S1. By Lemma 8 one



On Measuring Non-Recursive Trade-Offs 11

can effectively construct a D′ ∈ S1 satisfying L(D′) = Up(L(D)) ∩ A+. Since L(D′)
is λ-free regular and S2 contains all λ-free regular sets, our assumption implies that
L(D′) has a descriptor in S2 of size at most f(c1(D′)).

We can determine the set N of all descriptors in S2 of size at most f(c1(D′))
that describe only non-empty languages, since c2 is an sn-measure and emptiness
is decidable for S2. Since N is finite, we can write N as {N1, N2, . . . , Nn}. Then
for each i with 1 ≤ i ≤ n determine the lexicographically first non-empty word wi

accepted by Ni. Since S2 has a decidable emptiness problem, and it is an effective
trio, the word problem for S2 is also decidable. So, this task can be accomplished
by enumerating all words in increasing order and deciding the word problem for each
word and each remaining descriptor.

Now we make use of the observation from [7] that L(D) is empty if and only if
L(D′) = Up(L(D)) is empty; and the latter can be tested as follows: L(D′) is non-
empty if and only if at least one of the words wi is in L(D′). Finally, we simulate the
original descriptor D′ on all wi’s by a terminating Turing machine, for 1 ≤ i ≤ n. If
at least one of these words is accepted, then L(D) is non-empty, otherwise L(D) is
empty. Thus, emptiness is decidable for S1, a contradiction. 2

Finally, we list a few applications. Growing context-sensitive grammars, which
appear in the statement of the next theorem, were studied, for example, in [3, 5].
Observe that context-sensitive grammars form an effective trio, and the decidability
status of the emptiness problem of these language families can be found in the previ-
ously mentioned references. We skip the straight-forward proof of the next theorem.

Theorem 12 For any applicable s-measures, the following trade-offs are non-
recursive:

1. between growing context-sensitive grammars and finite automata,
2. between growing context-sensitive grammars and (linear) context-free

grammars,
3. between growing context-sensitive grammars and ET0L systems,
4. between growing context-sensitive grammars and indexed grammars,
5. between context-sensitive grammars and finite automata,
6. between context-sensitive grammars and ET0L systems,
7. between context-sensitive grammars and (linear) context-free grammars, and
8. between context-sensitive grammars and indexed grammars. 2

5. Recursive Trade-Offs Revisited

Finally, let us return to recursive trade-offs in more detail. One of the best known
recursive trade-offs is between nondeterministic and deterministic finite automata.
When the number of states is used as size measure the trade-off is bounded from
above by 2n and this bound is known to be tight [20, 21, 22]. Thus, it is also a
lower bound. In fact, the number of states is an sn-measure, since the underlying
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alphabet can be read off the descriptor and, thus, the automata can be enumerated in
order of increasing size. Another example of descriptional systems, which induce an
even higher bound is that of deterministic pushdown automata whose complexity is
measured by the length of their encodings, and deterministic finite automata whose

size is measured by their number of states. In [20, 27] a 22n1/O(1)

lower bound and

a 22nO(1)

upper bound has been shown. Here it is an open question whether one of
these bounds can be improved in order to obtain matching bounds.

Now the natural question arises, which functions can serve as lower and upper
bounds when changing from one descriptional systems to another one. We give a
very general answer in what follows, namely every reasonable function may appear in
the order of magnitude. First we consider the lower bound—a similar statement was
already shown in [18, 20] in a more restricted setting.

Theorem 13 Let f : N → N be any total recursive function. Then there exist two
descriptional systems S1 and S2 and two sn-measures c1 and c2 such that Ω(f) may
serve as a lower bound in the order of magnitude when changing from a descriptor
in S1 to an equivalent descriptor in S2.

Proof. We construct two descriptional systems S1 and S2 as follows. Let Mf be a
Turing machine that transforms each input 1n$, for n ≥ 1, into the word 1n$1f(n).
Since f is recursive such a machine exists. Next, we define the descriptional system S1

to consist of all Turing machines Mn, for n ≥ 1, that behave as follows. First ma-
chine Mn uses n + 4 states to check whether the input is of the form 1n$1∗. Then
it positions its head back onto the first input symbol, and simulates Mf on a second
track. Finally, it verifies whether the second block of 1 of the original input is equal in
length to f(n). If the answer is yes, then Mn accepts, otherwise it rejects. Altogether,
Turing machine Mn can be constructed such that it has Θ(n) states and the length
of its encoding is Θ(n). Obviously, for every n, the Turing machine Mn accepts the
finite language {1n$1f(n)}.

The second descriptional systems consists of all deterministic finite automata. By
easy means one can verify that any deterministic finite automaton accepting the
aforementioned language needs at least f(n) + n + 2 states and, thus, the lengths of
its encoding is Ω(f(n)+n). So, taking as c1 and c2 the length of encodings the stated
claim follows. 2

A closer look reveals that the above proof shows that O(f(n) + n) is an upper
bound in the order of magnitude, when changing from S1 to S2 descriptions. Thus,
this induces tight bounds in the order of magnitude if f is at least linear.

Theorem 14 Let f : N → N be any total recursive function such that f ∈ Ω(n).
Then there exist two descriptional systems S1 and S2 and two sn-measures c1 and c2

such that Θ(f) may serve as a tight bound in the order of magnitude when changing
from a descriptor in S1 to an equivalent descriptor in S2. 2
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