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The equivalence of finite automata and regular expressions dates back to the seminal

paper of Kleene on events in nerve nets and finite automata from 1956. In the present

paper we tour a fragment of the literature and summarize results on upper and lower
bounds on the conversion of finite automata to regular expressions and vice versa. As

an interesting special case also one-unambiguous regular expressions, a sort of a deter-

ministic version of a regular expression, are considered. We also briefly recall the known
bounds for the removal of spontaneous transitions (ε-transitions) on non-ε-free nondeter-

ministic devices. Moreover, we report on recent results on the average case descriptional
complexity bounds for the conversion of regular expressions to finite automata and new

developments on the state elimination algorithm that converts finite automata to regular

expressions.
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1. Introduction

There is a vast literature documenting the importance of the notion of finite au-

tomata and regular expressions as an enormously valuable concept in theoretical

computer science and applications. It is well known that these two formalisms are

equivalent, and in almost all monographs on automata and formal languages one

finds appropriate constructions for the conversion of finite automata to equivalent

regular expressions and back. Regular expressions, introduced by Kleene [75], are

well suited for human users and therefore are often used as interfaces to specify

certain patterns or languages. For example, in the widely available programming

environment Unix, regular(-like) expressions can be found in legion of software
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tools like, e.g., awk, ed, emacs, egrep, lex, sed, vi, etc., to mention a few of them.

On the other hand, automata [102] immediately translate to efficient data struc-

tures, and are very well suited for programming tasks. This naturally raises the

interest in conversions among these two different notions. Our tour on the subject

covers some (recent) results in the fields of descriptional and computational com-

plexity. During the last decade descriptional aspects on finite automata and regular

expressions formed an extremely vivid area of research. For recent surveys on de-

scriptional complexity issues of finite automata and regular expressions we refer

to, for example, [44, 62, 63, 64, 65, 66, 112]. This was not only triggered by appro-

priate conferences and workshops on that subject, but also by the availability of

mathematical tools and the influence of empirical studies. For obvious reasons, this

survey lacks completeness, as finite automata and regular expressions fall short of

exhausting the large number of related problems considered in the literature. We

give a view of what constitutes, in our opinion, the most interesting recent links to

the problem area under consideration.

Before we start our tour some definitions are in order. First of all, our nomen-

clature of finite automata is as follows: a nondeterministic finite automaton with

ε-transitions (ε-NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q is the finite set

of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is

the set of accepting states, and δ : Q × (Σ ∪ {ε}) → 2Q is the transition function.

If a finite automaton has no ε-transitions, i.e., the transition function is restricted

to δ : Q × Σ → 2Q, then we simply speak of a nondeterministic finite automaton

(NFA). Moreover, a nondeterministic finite automaton is deterministic (DFA) if and

only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. The language accepted by

the finite automaton A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where

the transition function is recursively extended to δ : Q × Σ∗ → 2Q. Second, we

turn to the definition of regular expressions: the regular expressions over an alpha-

bet Σ and the languages they describe are defined inductively in the usual way:a

∅, ε, and every letter a with a ∈ Σ is a regular expression, and when s and t are

regular expressions, then (s + t), (s · t), and (s)∗ are also regular expressions. The

language defined by a regular expression r, denoted by L(r), is defined as follows:

L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(s + t) = L(s) ∪ L(t), L(s · t) = L(s) · L(t),

and L(s∗) = L(s)∗. For further details on finite automata and regular expressions

we refer to, e.g., [67].

We start our tour on the subject with the question on the appropriate mea-

sure for finite automata and regular expressions. We discuss this topic in detail in

Section 2. There we also concentrate on two specific measures: on star height for

regular expressions and cycle rank for the automaton side. By Eggan’s theorem [29]

both measures are related to each other. Recent developments, in particular on the

aFor convenience, parentheses in regular expressions are sometimes omitted and the concatenation
is simply written as juxtaposition. The priority of operators is specified in the usual fashion:

concatenation is performed before union, and star before both product and union.
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conversion from finite automata to regular expressions, utilize this connection to

prove upper and lower bounds. Then in Section 3 we take a closer look on the con-

version from regular expressions to equivalent finite automata. We recall the most

prominent conversion algorithms such as Thompson’s construction and its optimized

version the follow automaton, the position or Glushkov automaton, and conversion

by computations of the (partial-)derivatives. We summarize the known relations on

these devices, which were mostly found during the last decade. Significant differ-

ences on these constructions are pointed out and the presented developments on

lower bound and upper bound results enlighten the efficiency of these algorithms.

Some of the bounds are sensitive to the size of the alphabet. We also briefly recall

the known bounds on the conversion of one-unambiguous expresssion to automata

and vice versa. One-unambiguous expressions can be seen as a sort of deterministic

variant of a regular expression and is dfefined via the position automaton. Besides

worst case descriptional complexity results on the synthesis problem of finite au-

tomata from regular expressions, we also list some recent results on the average case

complexity of the transformation of regular expressions to finite automata. Finally,

in Section 4 we consider the converse transformation. Again, we summarize some of

the few conversion techniques, but then stick in more detail to the so-called state

elimination technique. The reason for that is, that in [105], it was shown that almost

all conversion methods can be recast as variants of the state elimination technique.

Here, the ordering in which the states are eliminated can largely affect the size

of the regular expression corresponding to the given finite automaton. We survey

some heuristics that have been proposed for this goal. For appropriate choices of

the ordering, nontrivial upper bounds on regular expression size can be proved. By

looking at the transition structure of the NFA, results from graph theory can help

in obtaining shorter expressions. There we try to illustrate the key insights with

the aid of examples, thereby avoiding the need for a deeper dive into graph the-

oretic concepts. We also explain the technique by which the recent lower bounds

on regular expression size were obtained. In this part, the known upper and lower

bounds match only in the sense that we can identify the rough order of magnitude.

So we observe an interesting tension between algorithms with provable performance

guarantees, other heuristics that are observed to behave better in experiments, and

some lower bounds, which seize the expectations that we may have on practical algo-

rithms. Finally, we also recall some results on the conversion of automata accepting

one-unambiguous languages to one-unambiguous expressions.

2. Measures on Finite Automata and Regular Expressions

What can be said about the proper measure on finite automata and regular expres-

sions? For finite automata there are two commonly accepted measures, namely the

number of states and the number of transitions. The measure sc (nsc, respectively)

counts the number of states of a deterministic (nondeterministic, respectively) finite

automaton and tc (ntc, respectively) does the same for the number of transitions
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for the appropriate devices. Moreover, nscε (ntcε, respectively) gives the number of

states (transitions, respectively) in an ε-NFA. The following relations between these

measures are well known—see also [92, 94, 102].

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then

(1) nscε(L) = nsc(L) ≤ sc(L) ≤ 2nsc(L) and tc(L) = |Σ| · sc(L) and

(2) nsc(L)− 1 ≤ ntcε(L) ≤ ntc(L) ≤ |Σ| · (nsc(L))2,

where sc(L), tc(L) (nsc(L), ntc(L), respectively) refers to the minimum sc (nsc, ntc,

respectively) among all DFAs (NFAs, respectively) accepting L. Similarly, nscε(L)

(ntcε(L), respectively) is the minimum nscε (ntcε, respectively) among all ε-NFAs

for the language L.

As it is defined above, deterministic transition complexity is not an interesting

measure by itself, because it is directly related to sc, the deterministic state com-

plexity. But the picture changes when deterministic transition complexity is defined

in terms of partial DFAs. Here, a partial DFA is an NFA whose transition func-

tion δ satisfies |δ(q, a)| ≤ 1, for all states q ∈ Q and all alphabet symbols a ∈ Σ. A

partial DFA cannot save more than one state compared to an ordinary DFA, but

it can save a considerable number of transitions in some cases. This phenomenon is

studied, e.g., in [33, 83, 84]. Further measures for the complexity of finite automata,

in particular measures related to unambiguity and limited nondeterminism, can be

found in [44, 45, 46, 65, 70, 77, 78, 79, 100, 101, 103].

Now let us come to measures on regular expressions. While there are the two

commonly accepted measures for finite automata, there is no general agreement

in the literature about the proper measure for regular expressions. We summarize

some important ones: the measure size is defined to be the total number of symbols

(including ∅, ε, symbols from alphabet Σ, all operation symbols, and parentheses)

of a completely bracketed regular expression (for example, used in [2], where it is

called length). Another measure related to the reverse polish notation of a regular

expression is rpn, which gives the number of nodes in the syntax tree of the ex-

pressions (parentheses are not counted). This measure is equal to the length of a

(parenthesis-free) expression in post-fix notation [2]. The alphabetic width awidth is

the total number of alphabetic symbols from Σ (counted with multiplicity) [30, 91].

Relations between these measures have been studied, e.g., in [30, 31, 48, 73].

Theorem 2. Let L ⊆ Σ∗ be a regular language. Then

(1) size(L) ≤ 3 · rpn(L) and size(L) ≤ 8 · awidth(L)− 3,

(2) awidth(L) ≤ 1
2 · (size(L) + 1) and awidth(L) ≤ 1

2 · (rpn(L) + 1), and

(3) rpn(L) ≤ 1
2 · (size(L) + 1) and rpn(L) ≤ 4 · awidth(L)− 1,

where size(L) (rpn(L), awidth(L), respectively) refers to the minimum size (rpn,

awidth, respectively) among all regular expressions denoting L.
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Further measures for the complexity of regular expressions can be found

in [8, 30, 31, 54]. To our knowledge, these latter measures received far less atten-

tion to date.

In the remainder of this section we concentrate on two important measures on

regular expression and finite automata that at first glance do not seem to be related

to each other: star height and cycle rank or loop complexity. Both measures are very

important, in particular, for the conversion of finite automata to regular expressions

and for proving lower bound results on the latter. Intuitively, the star height of an

expression measures the nesting depth of Kleene-star operations. More precisely,

for a regular expression, the star height is inductively defined by

height(∅) = height(ε) = height(a) = 0,

height(s+ t) = height(s · t) = max (height(s), height(t)) ,

and

height(s∗) = 1 + height(s).

The star height of a regular language L, denoted by height(L) is then defined as

the minimum star height among all regular expressions describing L. The seminal

work dealing with the star height of regular expressions [29] established a relation

between the theory of regular languages and the theory of digraphs. The cycle rank,

or loop complexity, of a digraph D is defined inductively by the following rules: (i)

the cycle rank of an acyclic digraph is zero, (ii) cycle rank of a strongly connected

component (SCC) of the digraph with at least one arc is 1 plus the minimum cycle

rank among the digraphs obtainable from D by deleting a vertex, and (iii) the cycle

rank of a digraph with multiple SCCs equals the maximum cycle rank among the

sub-digraphs induced by these components. So, roughly speaking, the cycle rank

of a digraph is large if the cycle structure of the digraph is intricate and highly

connected. The following relation between cycle rank of automata and star height

of regular languages became known as Eggan’s Theorem [29, 105]:

Theorem 3. The star height of a regular language L equals the minimum cycle

rank among all ε-NFAs accepting L.

An apparent difficulty with applying Eggan’s Theorem is that the minimum is

taken over infinitely many automata, and the cycle rank of the minimum DFA for the

language does not always attain that minimum. That makes the star height a very

intricate property of regular languages. Indeed, the decidability status of the star

height problem was open for more than two decades, until a very difficult algorithm

was given in [60]. For recent progress on algorithms for the star height problem, the

reader is referred to [74]. From the above it is immediate that height(L) ≤ nsc(L).

If the language is given as a regular expression, a result from [49] tells us a much

sweeter truth:

Lemma 4. Let L ⊆ Σ∗ be a regular language with alphabetic width n. Then

height(L) ≤ 3 log(n+ 1).
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The idea behind the proof of this lemma is that we can convert a regular ex-

pression into a ε-NFA of similar size. The cycle structure of that automaton is

well-behaved; and thus its cycle rank is low compared to the size of the automa-

ton. Then Eggan’s Theorem is used to convert the automaton back into a regular

expression of low star height.

We return to the relationship between required size and star height of regular

expressions later on. Now let us turn our attention to the conversion of regular

expressions into equivalent finite automata.

3. From Regular Expressions to Finite Automata

The conversion of regular expressions into small finite automata has been intensively

studied for more than half a century. Basically the algorithms can be classified

according to whether the output is an ε-NFA, NFA, or even a DFA. In principle

one can distinguish between the following three major construction schemes and

variants thereof:

(1) Thompson’s construction [109] and optimized versions, such as the follow

automaton [73, 99],

(2) construction of the position automaton, or Glushkov automaton [43, 91],

and

(3) computation of the (partial) derivative automaton [4, 16].

Further automata constructions from regular expressions can be found in,

e.g., [6, 14, 21, 72, 34, 111]. We briefly explain some of these approaches in the course

of action—for further readings on the subject we refer to [105].

Thompson’s construction [109] was popularized by the implementation of the

Unix command grep (globally search a regular expression and print). It amounts to

the recursive connection of sub-automata via ε-transitions. These sub-automata are

connected in parallel for the union, in series for the concatenation, and in an iterative

fashion for the Kleene star. This yields an ε-NFA with a linear number of states and

transitions. A structural characterization of the Thompson automaton in terms of

the underlying digraph is given in [41, 42]. Thompson’s classical construction went

through several stages of adaption and optimization. The construction with the least

usage of ε-transitions was essentially given already in 1961 by Ott and Feinstein [99],

which also can be found in [27, 85, 90]—see Figure 1. Later this construction was

refined by Ilie and Yu [73] and promoted under the name follow automaton. In

fact, the follow automaton is constructed from a regular expression r by recursively

applying the construction of Ott and Feinstein and simultaneously improving on the

use of ε-transitions in the following sense: (i) in the concatenation construction a ε-

transition into the common state to both sub-automata leads to an appropriate state

merging; similarly a state merging is done for an ε-transition leaving the common

state, (ii) in the Kleene star construction, if the middle state is on a cycle of ε-

transitions, all these transitions are removed, and all states of the cycle are merged,
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(a) ∅

λ

(b) ε

a

(c) a

r

s

(d) Union r + s

r s

(e) Concatenation r · s

λ

r

λ

(f) Kleene star r∗

Fig. 1. The inductive construction of Ott and Feinstein yielding the precursor of the follow au-

tomaton Af (r) for a regular expression r.

and (iii) after the construction is finished, a possible ε-transition from the start

state is removed and both involved states are merged appropriately. Notice, that

the automaton thus constructed may still contain ε-transitions. In order to amend

the situation, an ε-removal procedure is applied: simply replace any sequence of an

ε-transition followed by an a-transition by directly connecting the states on both

ends of the sequence by a single a-transition directly. A final step takes care about

the ε-transition to the final state. This results in the follow automaton Af (r) of [73],

for the regular expression r.

Example 5. Imagine a software buffer supporting the actions a (“add work

packet”) and b (“remove work packet”), with a total capacity of n packets. Let rn
denote the regular expression for the action sequences that result in an empty buffer

and never cause the buffer to exceed its capacity. Then

r1 = (ab)∗ and rn = (a · rn−1 · b)∗, for n ≥ 2.

Following the construction of the follow automaton as described in [73] results in

the automaton depicted in Figure 2. Observe the constructed automaton is minimal,

0 1
a

b
2

a

b

. . .
a

b
n

a

b

Fig. 2. The follow automaton Af (rn) accepting L(rn).

which is not the case in general. This is our running example, where the behaviour

of the state elimination technique described in the next section is discussed in more

detail. �

Preliminary bounds on the required size of a finite automaton equivalent to

a given regular expression were given in [73]. Later, a tight bound in terms of



May 27, 2015 22:54 WSPC/INSTRUCTION FILE sample

8 Hermann Gruber and Markus Holzer

reverse polish notation [56], and also a tight bound in terms of alphabetic width

was found [48]. In the next theorem we summarize the results from [48, 56, 73]—

here size of an automaton refers to the sum of the number of states and the number

transitions:

Theorem 6. Let n ≥ 1, and r be a regular expression of alphabetic width n. Then

size 22
5 n is sufficient for an equivalent ε-NFA accepting L(r). In terms of reverse

polish length, the bound is 22
15 (rpn(r)+1)+1. Furthermore, there are infinitely many

languages for which both bounds are tight.

The aid for the tight bound in terms of the alphabetic width stated in the previ-

ous theorem is a certain normal form for regular expressions, which is a refinement

of the star normal form from [14]. The definition reads as follows—transformation

into strong star normal form preserves the described language, and is weakly mono-

tone with respect to all usual size measures:

Definition 7. The operators ◦ and • are defined on regular expressionsb over al-

phabet Σ. The first operator is given by: a◦ = a, for a ∈ Σ, (r + s)◦ = r◦ + s◦,

r?◦ = r◦, r∗◦ = r◦; finally, (r · s)◦ = r · s, if ε /∈ L(rs) and r◦ + s◦ otherwise. The

second operator is given by: a• = a, for a ∈ Σ, (r + s)• = r• + s•, (r · s)• = r• · s•,
r∗• = r•◦∗; finally, r?• = r•, if ε ∈ L(r) and r?• = r•? otherwise. The strong star

normal form of an expression r is then defined as r•.

What about the transformation of a regular expression into a finite automaton if

ε-transitions are not allowed? One way to obtain an NFA directly is to perform the

standard algorithm for removing ε-transitions, see, e.g., [67], which may increase

the number of transitions at most quadratically. Another way is to directly im-

plement the procedure during the recursive construction using non-ε-transitions to

connect the sub-automata appropriately. Constructions of this kind can be found in,

e.g., [3, 76]. For the conversion of ε-NFAs to NFAs the lower bound of [71] applies.

There it was shown that there are infinitely many languages which are accepted by

ε-NFAs with O(n · (log n)2) transitions, such that any NFA needs at least Ω(n2)

transitions. This lower bound is witnessed by a language over a growing size alpha-

bet and shows that, in this case, the standard algorithm for removing ε-transitions

cannot be improved significantly. For the case of binary alphabets, a lower bound

of Ω(n · 2c·
√

log n), for every c < 1
2 , was proved in [71] as well.

Another possibility to obtain ordinary NFAs is to directly construct the position

automaton, also called the Glushkov automaton [43]—see also [91]. Intuitively, the

states of this automaton correspond to the alphabetic symbols or, in other words, to

positions between subsequent alphabetic symbols in the regular expression. Let us

bSince ∅ is only needed to denote the empty set, and the need for ε can be substituted by the

operator L? = L ∪ {ε}, an alternative is to introduce also the ?-operator and instead forbid the
use of ∅ and ε inside non-atomic expressions. This is sometimes more convenient, since one avoids

unnecessary redundancy already at the syntactic level [48].



May 27, 2015 22:54 WSPC/INSTRUCTION FILE sample

From Finite Automata to Regular Expressions and Back—A Summary on Descriptional Complexity 9

be more precise: assume that r is a regular expression over Σ of alphabetic width n.

In r we attach subscripts to each letter referring to its position (counted from left

to right) in r. This yields a marked expression r with distinct input symbols over an

alphabet Σ that contains all letters that occur in r. To simplify our presentation we

assume that the same notation is used for unmarking, i.e., r = r. Then in order to

describe the position automaton we need to define the following sets of positions on

the marked expression. Let Pos(r) = {1, 2, . . . , awidth(r) } and Pos0(r) = Pos(r) ∪
{0}. The position set First takes care of the possible beginnings of words in L(r). It

is inductively defined as follows:

First(∅) = First(ε) = ∅,
First(ai) = {i},

First(s+ t) = First(s) ∪ First(t),

First(s · t) =

{
First(s) ∪ First(t) if ε ∈ L(s)

First(s) otherwise,

and

First(s∗) = First(s).

Accordingly the position set Last takes care of the possible endings of words in L(r).

Its definition is similar to the definition of First, except for the concatenation, which

reads as follows:

Last(s · t) =

{
Last(s) ∪ Last(t) if ε ∈ L(t)

Last(t) otherwise.

Finally, the set Follow takes care about the possible continuations in the words

in L(r). It is inductively defined as

Follow(∅) = Follow(ε) = Follow(ai) = ∅
Follow(s+ t) = Follow(s) ∪ Follow(t)

Follow(s · t) = Follow(s) ∪ Follow(t) ∪ Last(s)× First(t)

and

Follow(s∗) = Follow(s) ∪ Last(s)× First(s).

Then the position automaton for r is defined as Apos(r) = (Pos0(r),Σ, δpos , 0, Fpos),

where δ(0, a) = { j ∈ First(r) | a = aj }, for every a ∈ Σ and δ(i, a) = { j |
(i, j) ∈ Follow(r) and a = aj }, for every i ∈ Pos(r) and a ∈ Σ, and Fpos = Last(r),

if ε 6∈ L(r), and Fpos = Last(r) ∪ {0} otherwise.

Example 8. Consider the regular expression rn from Example 5. If we mark the

regular expression rn, then we obtain rn = (a1(a2(a3 . . . b2n−2)∗b2n−1)∗b2n)∗. Easy
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calculations show that the position sets read as follows:

First(rn) = {1}
Last(rn) = {2n}

and

Follow(rn) = { (i, i+ 1) | 1 ≤ i < 2n } ∪ { (i, 2n− i+ 1), (2n− i+ 1, i) | 1 ≤ i ≤ n }

The position automaton on state set Pos0(r) is depicted in Figure 3. Here the set

of final states is Fpos = {0, 2n}, since ε ∈ L(rn). Observe, that the follow automa-

0 1
a

2
a . . .a

n
a

n+1. . .2n−12n
bbb

b b ba a a

Fig. 3. The position automaton Apos (rn) accepting L(rn).

ton Af(rn) can be obtained from Apos(rn) by taking the quotient of automata, i.e.,

merging of states, with respect to the relation ≡f described in [73], which contains

the elements (i, 2n−i), for 0 ≤ i ≤ 2n. This leads to the merging of states 0 and 2n,

states 1 and 2n− 1, states 2 and 2n− 2, up to states n− 1 and n+ 1. �

An immediate advantage of the position automaton is observed, e.g., in [1, 7]:

for a regular expression r of alphabetic width n, for n ≥ 0, the position automa-

ton Apos(r) always has precisely n+1 states. Simple examples, such as the singleton

set {an}, show that this bound is tight. Nevertheless, several optimizations have

been developed that give NFAs having often a smaller number of states, while the

underlying constructions are mathematically sound refinements of the basic con-

struction. A characterization of the position automaton is given in [18]. Moreover,

structural comparisons between the position automaton with its refined versions,

namely the follow automaton, the partial derivative automaton [4], or the continu-

ation automaton [7] is given in [20, 73]. The partial derivative automaton is known

under different names, such as equation automaton [93] or Antimirov automaton [4].

Further results on structural properties of these automata, when built from regular

expressions in star normal form, can be found in [19, 22]. A quantitative comparison

on the sizes of the the aforementioned NFAs for specific languages shows that they

can differ a lot. The results listed in Table 1 are taken from [73]—here size of an

automaton refers to the sum of the number of states and the number transitions.

For the reason of comparison also the common follow set automaton Acfs is listed—

since the description of Acfs is quite involved we refer the reader to [72]. There, this

automaton was used to prove an upper bound on the number of transitions. The

issue on transitions for NFAs, in particular when changing from an ε-NFA to an

NFA, is discussed next.
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Finite Automaton

Expression Af (·) Apd(·) Apos(·) Acfs(·)

r1 = (a1 + ε)∗ and

Θ(|rn|2) Θ(|rn| · (log |rn|)2)rn+1 = (rn + sn)∗ with

sn = rn[aj 7→ aj+2n−1 ]

Θ(|rn|)

rn,m = sn(sn + tm) with

sn =
∑n

i=1 ai and

tm =
∑m

i=1 bi

Θ(|rn,m|) Θ(|rn,m|2) Θ(|rn,m| · (log |rn,m|)2)

rn =
∑n

i=1 ai · t∗n with

tn =
∑n

i=1 bi

Θ(|rn|) Θ(|rn|1/2) Θ(|rn|3/2) Θ(|rn| · (log |rn|)2)

rn =
∏n

i=1(ai + ε) Θ(|rn|2) Θ(|rn| · (log |rn|)2)

Table 1. Comparing sizes of some automata constructions for specific languages from the

literature—gray shading marks the smallest automaton. Here Af refers to the follow automa-
ton, Apd to the partial derivative automaton, Apos to the position automaton, and Acfs to the

common follow set automaton. Moreover, |rn| (|rn,m|, respectively) refers to the alphabetic width

of the regular expression rn (rn,m, respectively).

Despite the mentioned optimizations, except for the common follow set automa-

ton, all of these constructions share the same problem with respect to the number

of transitions. An easy upper bound on the number of transitions in the position

automaton is O(n2), independent of alphabet size. It is not hard to prove that the

position automaton for the regular expression

rn = (a1 + ε) · (a2 + ε) · · · (an + ε)

has Ω(n2) transitions. It appears to be difficult to avoid such a quadratic blow-up

in actual size if we stick to the NFA model. Also if we transform the expression first

into a ε-NFA and perform the standard algorithm for removing ε-transitions, see,

e.g., [67], we obtain no better result. This naturally raises the question of comparing

the descriptional complexity of NFAs over regular expressions. For about forty years,

it appears to have been considered as an unproven factoid that a quadratic number

of transitions will be inherently necessary in the worst case (cf. [72]). A barely

super-linear lower bound of Ω(n log n) on the number of transitions of any NFA

accepting the language of the expression rn was proved [72]. More interestingly, the

main result of that paper is an algorithm transforming a regular expression of size n

into an equivalent NFA with at most O(n · (log n)2) transitions. See Figure 4 on

how the algorithm of [72] saves transitions for regular expression rn, explained for

n = 5. In fact, this upper bound made their lower bound look reasonable at once!
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Fig. 4. Let rn = (a1 + ε) · (a2 + ε) · · · (an + ε) and n = 5. Position automaton Apos (r5) (left) and

its refined version the common follow set automaton Acfs (r5) (right) accepting language L(r5); in

both cases the dead state and all transitions leading to it are not shown. The automaton Acfs (r5)
is obtained as follows: the state 1 of Apos (r5) is split such that the new state gets the outgoing

transitions labeled with a3, a4, and a5, and is finally identified with state 2, which can be done

since it has the same outgoing transitions.

Shortly thereafter, an efficient implementation of that conversion algorithm was

presented [57], and the lower bound was improved in [80] to Ω(n·(log n)2/ log log n).

Later work [106] established that any NFA accepting language L(rn) indeed must

have at least Ω(n·(log n)2) transitions. So the upper bound of O(n·(log n)2) from [72]

is asymptotically tight:

Theorem 9. Let n ≥ 1 and r be a regular expression of alphabetic width n. Then

O(n · (log n)2) transitions are sufficient for an NFA to accept L(r). Furthermore,

there are infinitely many languages for which this bound is tight.

Notice that the example witnessing the lower bound is over an alphabet of

growing size. For alphabets of size two, the upper bound was improved first [36]

to O(n · log n), and then even to n ·2O(log∗ n), where log∗ denotes the iterated binary

logarithm [106]. Moreover, a lower bound of Ω(n · (log k)2) on the size of NFAs with

k-letter input alphabet was show in [106], too. Thus the question from [69] whether

a conversion from regular expressions over a binary alphabet into NFAs of linear

size is possible, is almost settled by now.

Theorem 10. Let n ≥ 1 and r be a regular expression of alphabetic width n over a

binary alphabet. Then n·2O(log∗ n) transitions are sufficient for a NFA to accept L(r).

Next, let us briefly discuss the problem of converting regular expressions to

DFAs. Again, this problem has been studied by many authors. The obvious way to

obtain a DFA is by applying the well known subset or power-set construction [102].

Due to this construction the obtained DFA may be of exponential size. A more

direct and convenient way is to use Brzozowski’s derivatives of expressions [16]. A

taxonomy comparing many different conversion algorithms is given in [111]. Re-

garding the descriptional complexity, a tight bound of 2n + 1 states in terms of

alphabetic width is given in [76]. The mentioned work also establishes a matching

lower bound, but for a rather nonstandard definition of size. In terms of alphabetic

width, the best lower bound known to date is from [31]. Together, we have the
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following result:

Theorem 11. Let n ≥ 1 and r be a regular expression of alphabetic width n over

a binary alphabet. Then 2n + 1 states are sufficient for a DFA to accept L(r). In

contrast, for infinitely many n there are regular expressions rn of alphabetic width n

over a binary alphabet, such that the minimal DFA accepting L(rn) has at least 5
42

n
2

states.

An interesting special case is formed by those regular expressions whose position

automaton is a partial deterministic finite automaton. These expressions are referred

to as one-unambiguous regular expressions [15], or also as deterministic regular

expressions [82, 107]. The intuition behind this concept is that, if we read a word

from left to right without look-ahead, it is always clear where in the expression the

next symbol can be matched.

Recall that for the definition of the position automaton, we introduced the

marked version r of a regular expression r, where the ith occurrence of an al-

phabet symbol is marked with subscript i. This comes into play again for the

formal definition of one-unambiguous regular expressions. A regular expression r

over Σ is a one-unambiguous regular expression [15], if for all a ∈ Σ and all marked

words u, v, w ∈ Σ it holds uaiv ∈ L(r) and uajw ∈ L(r) implies i = j. We say that

a language is one-unambiguous, if it is denoted by some one-unambiguous regular

expression.

Example 12. The following examples are from [15]. Consider the regular expres-

sion r = (a+ b)∗a. Its marked version is r = (a1 + b2)∗a3. Taking u = b1, v = a3,

and w = ε, the words ua1v = b1a1a3 and ua2w = b1a3 are both in L(r). Thus r

is not deterministic. The expression s = b∗a(b∗a)∗ denotes the same language as r

and is one-unambiguous. See Figure 5 for a drawing of the correspondig position

automata of these expressions.

0
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3

a a

b a

b a

a

0

1

2

3

4

b

a

a

b

b

a

b

a b

Fig. 5. Two position automata for the equivalent regular expressions r = (a + b)∗a (left) and

s = b∗a(b∗a)∗ (right). Observe, that the left automaton is nondeterministic, while the automaton
on the right is a partial deterministic finite automaton.

For n ≥ 1, the languages denoted by the regular expressions (a + b)∗a(a + b)n

are the canonical examples of languages that are regular but not one-unambiguous.

The minimal DFA accepting a one-unambiguous language obeys certain structural
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restrictions. These can be used to give a rigorous proof that the abovementioned

languages are not one-unambiguous. �

Thus, while deterministic finite automata capture the full class of regular lan-

guages, this notion of determinism for regular expressions is strictly less expres-

sive, and the one-unambiguous languages form a proper subclass of the regular

languages.c We note in passing that several approaches to generalizing the notion

one-unambiguous regular languages have been considered, see, e.g., [40, 58].

There is a linear-time algorithm deciding whether a given regular expression is

one-unambiguous, and these expressions admit very fast regular expression match-

ing algorithms [47]. Furthermore, the equivalence problem of one-unambiguous reg-

ular expressions, as well as the decision problem whether the language denoted by

a regular expression is contained in the language denoted by a one-unambiguous

regular expression is solvable efficiently [68]. Also in terms of descriptional com-

plexity, one-unambiguous regular expressions compare favorablyd to the general

case: as shown in [15], a regular expression r is one-unambiguous if and only if

Apos(r) is a partial deterministic finite automaton. The language Ln = {an} is one-

unambiguous, and since nsc(Ln) = n+1 and sc(Ln) = n+2, this witnesses the tight

bounds for converting one-unambiguous regular expressions into finite automata.

Theorem 13. Let n ≥ 1 and r be a one-unambiguous regular expression of al-

phabetic width n. Then n + 1 states (n + 2 states, respectively) are sufficient for

an NFA (DFA, respectively) to accept L(r). Furthermore, there are infinitely many

languages for which these bounds are tight.

Recent developments on the conversion of regular expressions to finite automata

show an increasing attention on the study of descriptional complexity in the average

case. For instance, in [97] it was shown that, when choosing the expression uniformly

at random, the position automaton has Θ(n) transitions on average, where n refers

to the nodes in the parse tree of the expression. A similar result holds w.r.t. al-

phabetic width, for the position automaton as well as for the partial derivative

automaton [12]. A closer look reveals that the number of transitions in the partial

derivative automaton is, on average, half the size of the number of transitions in the

position automaton [12], for large alphabet sizes; this also holds for the number of

states [11]. Results on the average size of ε-NFAs built from Thompson’s construc-

tion and variants thereof [73, 108, 109] can be found in [13]—in their investigation

the authors consider the follow automaton before the final ε-removal is done. Let

cThe reader may have noticed the difference to the notion of unambiguous regular expressions
from [9]. These require that for each word there is at most one sequence of positions of symbols
in the regular expression that matches the word. Every regular language is denoted by some

unambiguous regular expression.
dThis of course depends on the viewpoint. From another perspective, regular expressions can be
exponentially more succinct than DFAs, which is no longer true for one-unambiguous regular

expressions.
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us call this device ε-follow automaton. It turns out that the ε-follow automaton

is superior to the other constructions considered. In particular, the number of ε-

transitions asymptotically tends to zero, i.e., the ε-follow automaton approaches

the follow-automaton.

Almost all of these results were obtained with the help of the framework of ana-

lytic combinatorics [32]. The idea to use this approach is quite natural. Recall, that

the number of regular expressions of a certain size measured by, e.g., alphabetic

width, can be counted by using generating functions—for more involved measures,

one has to use multivariate generating functions. To this end one transforms a gram-

mar describing regular expressions such as, e.g., the grammar devised in [55], into a

generating function. Since the grammar describes a combinatorial class, the gener-

ating function can be obtained by the symbolic method of [32], and the coefficients

of the power series can be estimated to give approximations of the measure under

consideration.

Finally, let us note, that the results on the average size of automata depends on

the probability distribution that is used for the average-case analysis. In [98] it was

shown that the number of transitions of the position automaton is in Θ(n2) under a

distribution that is inspired from random binary search trees (BST-like model). To

our knowledge, average case analysis under the BST-like model for other automata

such as the follow automaton or the partial derivative automaton, has not been

conducted so far.

4. From Finite Automata to Regular Expressions

There are a few classical algorithms for converting finite automata into equivalent

regular expressions, namely

(1) the algorithm based on Arden’s lemma [5, 24], and

(2) the McNaughton-Yamada algorithm [91], and

(3) the state elimination technique [17].

These procedures look different at first glance. We briefly explain the main idea of

these approaches—for a detailed description along with an explanation of the differ-

ences between the methods, the reader is referred to [105]. There it is shown, that

all of the above approaches are more or less reformulations of the same underlying

algorithmic idea, and they yield (almost) the same regular expressions.e

An algebraic approach to solve the conversion problem from finite automata to

regular expressions is the algorithm based on Arden’s lemma [5, 24]. It puts forward

a set of language equations for a given finite automaton. Here, the ith equation

describes the set Xi of words w such that the given automaton can go from the ith

eLet us also mention that there is another algebraic algorithm from [24], which is based on the
recursive decomposition of matrices into blocks. Here, the precise relation to the aforementioned

algorithms remains to be investigated [105].
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state to an accepting state on reading w. That system of equations can be resolved

by eliminating the indeterminates Xi using a method that resembles Gaussian elim-

ination. But we work in a an algebraic structure different from a field, so for the

elimination of variables, we have to resort to Arden’s lemma:

Lemma 14. Let Σ be an alphabet, and let K,L ⊆ Σ∗, where K does not contain

the empty word ε. Then the set K∗L is the unique solution to the language equation

X = K ·X + L, where X is the indeterminate.

Now let us have a look on how Arden’s lemma can be applied to our running

example.

Example 15. From the automaton depicted in Figure 2 one reads off the equations

X0 = a ·X1 + ε, Xi = a ·Xi+1 + b ·Xi−1, for 1 ≤ i < n, and Xn = b ·Xn−1.

Substituting the right hand side of Xn in the next to last equation and solving it by

Arden’s lemma results in Xn−1 = (ab)∗b · Xn−2. For short, Xn−1 = r1 · b · Xn−2,

where ri is defined as in Example 5. Next this solution is substituted into the equation

for Xn−2. Solving for Xn−2 gives us Xn−2 = r2 · b ·Xn−3. Proceeding in this way

up to the very first equation gives us X0 = a · rn−1 · b · X0 + ε. The solution

to the indeterminate X0 is according to Arden’s lemma (a · rn−1 · b)∗ · ε = rn,

by applying obvious simplifications. Hence, for instance, in case n = 6 we obtain

(a(a(a(a(a(ab)∗b)∗b)∗b)∗b)∗b)∗. �

The McNaughton-Yamada algorithm [91] maintains a matrix with regular ex-

pression entries, where the rows and columns are the states of the given automaton.

The iterative algorithm uses a ranking on the state set, and proceeds in n rounds,

if n is the number of states in the given automaton A. In the matrix (ajk)j,k com-

puted in round i, the entry ajk is an expression describing the nonempty labels w of

computations of A starting in j and ending in k, such that none of the intermediate

states of the computation is ranked higher than i. From these expressions, it is not

difficult to obtain a regular expression describing L(A).

Example 16. Running the McNaughton-Yamada algorithm on the automaton de-

picted in Figure 2 for n = 3 with the ranking 3, 2, 1, 0 starts with the following

matrix:


3 2 1 0

3 ∅ b ∅ ∅
2 a ∅ b ∅
1 ∅ a ∅ b

0 ∅ ∅ a ∅


If (ajk)j,k denotes the matrix computed in round i, then the matrix (bjk)j,k for round

i+ 1 can be computed using the rule

bjk = ajk + aji(aii)
∗aik
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After the first round, the entry in the upper left corner of the matrix reads as

∅+ ∅∅∗∅. It is of course helpful to simplify the intermediate regular expressions, by

applying some obvious simplifications. As noted in [91], we can use in particular

bij = (aii)
∗aij and bji = aji(aii)

∗.

Then the matrix computed in the first round reads as
∅ b ∅ ∅
a ab b ∅
∅ a ∅ b
∅ ∅ a ∅

 ,

the one from the second round is
b(ab)∗a b(ab)∗ b(ab)∗b ∅
(ab)∗a (ab)∗ab (ab)∗b ∅
a(ab)∗a a(ab)∗ a(ab)∗b b

∅ ∅ ∅ ∅

 ,

and the computation is continued in the same vein. Finally, the entry in the

lower-right corner of the matrix reads as (a(a(ab)∗b)∗b)∗a(a(ab)∗b)∗b, and the

desired regular expression describing L3 is obtained by adding the empty word:

ε+ (a(a(ab)∗b)∗b)∗a(a(ab)∗b)∗b. �

A few industrious readers, who have worked out the calculation of the previous

example until the final matrix, may have observed that many of the intermediate

expressions were actually not needed for the final result. Indeed, in a computer

implementation [87] of the basic McNaughton-Yamada algorithm during the 1960s,

the author notes: “a basic fault of the method is that it generates such cumbersome

and so numerous expressions initially.” Below we discuss how the generation of

unnecessary sub-expressions can be avoided.

We now come to an algorithm that we describe in greater detail, namely the state

elimination algorithm [17]. This procedure maintains an extended finite automaton,

whose transitions are labeled with regular expressions, rather than alphabet sym-

bols. The computation of an NFA A can be thought of as reading the input word

letter by letter, thereby nondeterministically changing its state with each letter in

a way that is consistent with its transition table δ. On reading a word w ∈ Σ, we

say that the finite automaton A and can go on input w from state j to state k,

if there is a computation on input w taking A from state j to k. Similarly, for a

subset U of the state set Q of the automaton A, we say that A can go on input w

from state j through U to state k, if there is a computation on input w taking A

from state j to k, without going through any state outside U , except possibly j

and k. With the rôles of j, k, and U fixed as above, we now define the language LU
jk

as the set of input words on which the automaton A can go from j to k through U .

The state elimination scheme fixes an ordering on the state set Q. Starting with

U = ∅, regular expressions denoting the languages L∅jk for all pairs (j, k) ∈ Q ×Q
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can be easily read off from the transition table of A. Now an important observation

is that for each state i ∈ Q \ U holds

L
U∪{i}
jk = LU

jk ∪ LU
ji · (LU

ii)
∗ · LU

ik.

Letting i run over all states according to the ordering, we can grow the set U one by

one, in each round computing the intermediate expressions r
U∪{i}
jk for all j and k.

The final regular expression is obtained by utilizing the fact L(A) =
⋃

f∈F L
Q
q0f

.

As observed already by McNaughton and Yamada [91], we have the inequality

awidth(L∅jk) ≤ |Σ|, and each round increases the alphabetic width of each inter-

mediate sub-expression by a factor of at most 4. Another convenient trick is to

modify the automaton, by adding a new initial state s and a new final state t to

the automaton without altering the language, such that t is the single final state,

and there are no transitions entering s or leaving t. Then s and t need not to be

added to the set U . Instead, observe that L(A) = LU
st, with U = Q \ {s, t}. We also

notef that the computation of rUjk needs to be carried out only for those j and k

not in U . We thus obtain the following bound:

Theorem 17. Let n ≥ 1 and A be an n-state NFA over alphabet Σ. Then alpha-

betic width |Σ| · 4n is sufficient for a regular expression describing L(A). Such an

expression can be constructed by state elimination.

In contrast, the state elimination algorithm might suddenly yield a much simpler

regular expression once we change the ordering in which the states are eliminated.

We illustrate the influence of the elimination ordering on a small example.

Example 18. Consider our software buffer from Example 5 for n = 6. Let Ln :=

L(rn). For illustration, a minimal DFA for L6 is depicted in Figure 6. The two

regular expressions

(a(a(a(a(a(ab)∗b)∗b)∗b)∗b)∗b)∗

and

ε+a(ab+ba)∗b+a(ab+ba)∗aa (ab+ ba+ bb(ab+ ba)∗aa+ aa(ab+ ba)∗bb)
∗
bb(ab+ba)∗b

both describe the language L6. The first expression is obtained by eliminating the

states in the order 6, 5, 4, 3, 2, 1, and 0, while the second expression is produced

by the order 0, 2, 4, 6, 1, 5, and 3. Note that the expressions have very different

0 1
a

b
2

a

b
3

a

b
4

a

b
5

a

b
6

a

b

Fig. 6. A minimal DFA accepting the language L6 := L(r6).

fThe same trick applies for the McNaughton-Yamada algorithm: if the single initial and the single
final state are not eliminated, we can erase the entries of the ith row and the ith column of the

computed matrix in round i.
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structure. The first is much shorter, but has star height 6, while the second, and

longer expression, has star height 2. Indeed, in [89] it was shown that the minimum

star height among all regular expressions denoting Ln equals blog(n+1)c, so the star

height of the second expression is optimal. The authors suspect that this language

family exhibits a trade-off in the sense that the regular expressions for Ln cannot

be simultaneously short and of low star height. �

Perhaps the earliest reference mentioning the influence of the elimination or-

dering is from 1960. In [91], they proposed to identify the states that “bear the

most traffic,” i.e., those vertices in the underlying graph with the highest degree,

and to eliminate these states at last. Since then, various heuristics for computing

elimination orderings that yield short regular expressions have been proposed in

the literature. In [81], a simple greedy heuristic was devised. It was proposed to

assign a measure to each state, and this measure is recomputed each time when

a state is eliminated. This measure indicates the priority in which the states are

eliminated. Observe that eliminating a state tends to introduce new arcs in the

digraph underlying the automaton. Thus we can order the states by a measure

that is defined as the number of ingoing arcs times the number of outgoing arcs.

In [26] a refined version of the same idea is proposed, which takes also the lengths of

the intermediate expressions into account, instead of just counting the ingoing and

outgoing arcs. Later, a different strategy for accounting the priority of a state was

suggested: as measure function, simply take the number of cycles passing through

a state. There are some automata, where this heuristic outperforms the one we

previously described, but on most random DFAs the performance is comparable.

For the heuristic based on counting the number of cycles, recomputing the measure

after the elimination of each state does not make a big difference [95]. Another

idea is to look for simple structures in finite automata, such as bridge states [59].

A bridge state typically exists if the language under consideration can be written

as the concatenation of two nontrivial regular languages. Unfortunately, a random

DFA almost surely contains no bridge states at all, as the number of states grows

larger [95]. These and other heuristics were compared empirically on a large set of

random DFAs as input in [53, 95]. Although there are also advanced strategies for

choosing an elimination ordering, which have provable performance guarantees, the

greedy heuristic from [26] performs best in most cases.

Beyond heuristics, we can use elimination orderings to prove nontrivial upper

bounds on the conversion of DFAs over small alphabets into regular expressions.

For the case of binary alphabets, a bound of O(1.742n) was given in [50], which

was then improved to O(1.682n) in [28]. These bounds can be reached with state

elimination by using appropriate elimination orderings.

Theorem 19. Let n ≥ 1 and A be an n-state DFA over a binary alphabet. Then

size O (1.682n) is sufficient for a regular expression describing L(A).
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Similar bounds, but with somewhat larger constants in place of 1.682, can be de-

rived for larger alphabets.g Moreover, the same holds for NFAs having a comparably

low density of transitions.

We sketch how to establish a simpler upper bound than this, which after all

gives o(4n) for all alphabets of constant size. To get things going, assume that

we want to determine LU
jk, and that the underlying sub-graph induced by U falls

apart into two mutually disconnected sub-graphs A and B. Then on reading a

word w, the automaton goes from j to k either through A or through B, and

thus LU
jk = LA

jk∪LB
jk, and this is reflected by the regular expressions computed using

state elimination. In particular, if the sub-graph induced by U is an independent

set, i.e., a set of isolated vertices, in the underlying graph, then LU
jk =

⋃
i∈U L

{i}
jk .

In this case, the blow-up factor incurred by eliminating U is linear in |U |, instead of

exponential in |U |. For a DFA A over constant alphabet, the underlying graph has

a linear number of edges. It is known that such graphs have an independent set of

size cn, where c is a constant depending on the number of edges. Suppose that U is

such an independent set. Then we partition the state set of A into an “easy” part U

and a “hard” part Q \ U . Eliminating U increases the size of the intermediate

expressions by a factor linear in |U |. Thereafter, eliminating the remaining (1− c)n
states may incur a size blow-up by a factor of 4(1−c)n. Altogether, this gives a

regular expression of alphabetic width in |Σ| · o(4n) for L(A).

Let us again take a look at an example.

Example 20. For illustrating the above said, consider the language

L3 = (a1b1)∗ � (a2b2)∗ � (a3b3)∗,

where the interleaving, or shuffle, of two languages L1 and L2 over alphabet Σ is

L�M = {w ∈ Σ∗ | w ∈ x� y for some x ∈ L and y ∈M },

and the interleaving x� y of two words x and y is defined as the set of all words of

the form x1y1x2y2 · · ·xnyn, where x = x1x2 · · ·xn, y = y1y2 · · · yn with xi, yi ∈ Σ∗,

for n ≥ 1 and 1 ≤ i ≤ n. Note that in this definition, some of the sub-words xi
and yi can be empty.

The language L3 can be accepted by a partial DFA over the state set {0, 1}3,

and whose transition function is given such that input ai sets the ith bit left of the

rightmost bit of the current state from 0 to 1, and input bi resets the ith bit, again

counting from right to left, of the current state from 1 to 0. All other transitions are

undefined. The initial state is 000, which is also the single final state. Notice that

the graph underlying this automaton is the 3-dimensional cube, with 8 vertices—see

Figure 7. Generalizing this example to d ≥ 3, the underlying graph of Ld is the

d-dimensional hypercube, with 2d many vertices.

gAn improved bound of O(1.588n) was announced in a previous version of this paper, but a proof
of that bound has eluded us so far.
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Fig. 7. Automaton accepting the language L3 = (a1b1)∗�(a2b2)∗�(a3b3)∗. The underlying graph

is the 3-dimensional cube.

It is well known that the d-dimensional hypercube is 2-colorable, and thus has

an independent set that contains at least half of the vertices. Eliminating this inde-

pendent set before the other vertices yields a regular expression of alphabetic width

O(n · 2n), which is way better than the trivial bound of O(4n). �

We present another application of this idea. Planar finite automata are a special

case of finite automata, which were first studied in [10]. To convert a planar finite

automaton into a regular expression, one can look for a small set of vertices, whose

removal leaves to mutually disconnected sub-graphs with vertex sets A and B. Then

again, we have LU
jk = LA

jk ∪ LB
jk, and this is reflected by the regular expressions

computed by state elimination. Since the sub-graphs induced by A and B are again

planar, one can apply the trick recursively. Also for this special case, tight upper

and lower bounds were found recently [31, 49, 52].

Theorem 21. Let n ≥ 1 and A be an n-state planar DFA or NFA over alphabet Σ.

Then size |Σ| · 2O(
√
n) is sufficient for a regular expression describing L(A). Such

an expression can be constructed by state elimination.

Taking this idea again a step further, one can arrive at a parametrization

where the conversion problem from finite automata to regular expressions is fixed-

parameter tractable, in the sense that the problem is exponential in that parameter,

but not in the size of the input. Recall that we have introduced the concept of cycle

rank of a digraph in the course of discussing the star height in Section 2. Now for a

digraph D, let Dsym denote the symmetric digraph obtained by replacing each arc

in D with a pair of anti-parallel arcs. The undirected cycle rank of D is defined as

the cycle rank of Dsym. If the conversion problem from finite automata to regular
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expressions is parametrized by the undirected cycle rank of the given automaton,

one can prove the following bound [52]:

Theorem 22. Let n ≥ 1 and A be an n-state DFA or NFA over alphabet Σ, whose

underlying digraph is of undirected cycle rank at most c, for some c ≥ 1. Then size

|Σ| · 4c ·n is sufficient for a regular expression describing L(A). Such an expression

can be constructed by state elimination.

We note that fixed-parameter tractability also holds in the sense of computa-

tional complexity, since computing the undirected cycle rank is fixed-parameter

tractable, see, e.g., [104].

But in the general case, the exponential blow-up when moving from finite au-

tomata to regular expressions is inherent, that is, independent of the conversion

method. Already in the 1970s the existence of languages Ln was shown, that ad-

mit n-state finite automata, but require regular expressions of alphabetic width at

least 2n−1, for all n ≥ 1, see [30]. Their witness language is over an alphabet of

growing size, which is quadratic in the number of states. Their proof technique was

tailored to the witness language involved. The question whether a comparable size

blow-up can also occur for constant alphabet size [31] was settled only a few years

ago. The answer was provided around the same time by two independent groups of

researchers, who worked with different proof techniques, and gave different exam-

ples [38, 49].

How are such lower bounds established? We shall describe a general method,

which has been used to prove lower bounds on regular expression size in various

contexts [37, 49, 51, 61]. For this purpose, a more convenient formulation of Lemma 4

is the star height lemma, which reads as follows:

Lemma 23. Let L be a regular language. Then awidth(L) ≥ 2Ω(height(L)).

That is, the minimum regular expression size of a regular language is at least

exponential in the minimum required star height. But now this looks as if we have

replaced one evil with another, since determining the star height is eminently diffi-

cult in general [74]. But there is an important special case, in which the star height

can be determined more easily: a partial deterministic finite automaton is called

bideterministic, if it has a single final state, and if the NFA obtained by reversing

all transitions and exchanging the roles of initial and final state is again a partial

DFA—notice that, by construction, this NFA in any case accepts the reversed lan-

guage. A regular language L is bideterministic if there exists a bideterministic finite

automaton accepting L. These languages form a proper subclass of the regular lan-

guages. For these languages, McNaughton’s Theorem [88] states that the star height

is equal to the cycle rank of the digraph underlying the minimal partial DFA.

Example 24. Define Km = {w ∈ {a, b}∗ | |w|a ≡ 0 mod m } and Ln = {w ∈
{a, b}∗ | |w|b ≡ 0 mod n }. For simplicity, assume m ≤ n. It is straightforward to

construct deterministic finite automata with m states (with n states, respectively)
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arranged in a directed cycle describing the languages Km and Ln, respectively. By

applying the standard product construction on these automata, we obtain a deter-

ministic finite automaton A accepting the language Km ∩ Ln. The digraph under-

a a a a

b b b

b

b

a

b

a

Fig. 8. Drawing of the discrete directed (m×n)-torus in the case where m = 2 and n = 4, induced

by the automata for the languages Km and Ln.

lying automaton A is the directed discrete torus. This digraph can be described as

the Cartesian graph product of two directed cycles, see Figure 8 for illustration.

The cycle rank of the (m × n)-torus is equal to m if m = n, and equal to m + 1

otherwise [49]. It is easily observed that the automaton A is bideterministic, hence

the star height of L(A) coincides with the cycle rank of its underlying digraph. By

invoking the star height lemma, we can derive a lower bound of 2Ω(m) on the mini-

mum regular expression size required for Lm ∩Kn. �

For the succinctness gap between DFAs and regular expressions over binary

alphabets, a lower bound of 2Ω(
√

n/ log n) was reported in [38], while a parallel ef-

fort [49] resulted in an asymptotically tight lower bound of 2Ω(n). We have the

following result:

Theorem 25. Let n ≥ 1 and A be an n-state DFA or NFA over alphabet Σ. Then

size |Σ| · 2Θ(n) is sufficient and necessary in the worst case for a regular expression

describing L(A). This already holds for alphabets with at least two letters.

Recall that the notation 2Θ(n) implies a lower bound of cn, for some c > 1. The

hidden constant in the lower bound for binary alphabets is much smaller compared

to the lower bound of 2n−1 previously obtained in [30] for large alphabets. The

upper bound from Theorem 19 implies that c can be at most 1.588 for alphabets of

size two. Narrowing down the interval for the best possible c for various alphabet

sizes is a challenge for further research.
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We turn our attention to some interesting special cases of regular languages,

namely the finite and the unary regular languages. Here, the situation is signifi-

cantly different, as we can harness specialized techniques which are more powerful

than state elimination. Also, finite and unary languages have star height at most 1,

and thus more tailored techniques than the star height lemma are needed to es-

tablish lower bounds. Indeed, the case of finite languages was already addressed

in the very first paper on the descriptional complexity of regular expressions [30].

They give a specialized conversion algorithm for finite languages, which is different

from the state elimination algorithm. Their results imply that every n-state DFA

accepting a finite language can be converted into an equivalent regular expression

of size nO(log n). The method is quite interesting, since it is not based on state elim-

ination, but rather on a clever application of the repeated squaring trick. They also

provide a lower bound of nΩ(log log n) when using an alphabet of size O(n2). The

challenge of tightening this gap was settled more than thirty years later in [54],

where a lower bound technique from communication complexity is adapted, which

originated in the study of monotone circuit complexity.

Theorem 26. Let n ≥ 1 and A be an n-state DFA or NFA over alphabet Σ ac-

cepting a finite language. Then size |Σ| · nΘ(log n) is sufficient and necessary in the

worst case for a regular expression describing L(A). This still holds for constant

alphabets with at least two letters.

The case of unary languages was discussed in [35, 86, 110]. Here the main idea is

that one can exploit the simple cycle structure of unary DFAs and of unary NFAs

in Chrobak normal form [23]. In the case of NFAs, elementary number theory helps

to save a logarithmic factor of the quadratic upper bound [35]. The main results

are summarized in the following theorem.

Theorem 27. Let n ≥ 1 and A be an n-state DFA over a unary alphabet. Then

size Θ(n) is sufficient and necessary in the worst case for a regular expression

describing L(A). When considering NFAs, the upper bound changes to O(n2/ log n).

The tight bounds for the conversion of unary NFAs to regular expressions thus

remain to be determined.

We return again to the case of one-unambiguous regular languages. In the sem-

inal paper about one-unambiguous regular expressions [15], it was shown that a

DFA accepting a one-unambiguous regular language can be converted in exponen-

tial time into an equivalent one-unambiguous regular expression. Although they do

not explicitly state an upper bound on the size of this regular expression, the fol-

lowing bound can be readily deduced from the constructive proof of Thm. G in [15].

The construction starts from the given DFA A. It computes the final expression re-

cursively from subautomata of A with fewer transitions, and the algorithm spawns

in each recursive step at most |Σ| + 1 branches, where Σ denotes the input alpha-

bet. The terminating cases for the recursion correspond to one-unambiguous regular

expressions of constant size each. One thus obtains the following bound:
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Theorem 28. Let n ≥ 1 and A be an n-state DFA accepting a one-unambiguous

regular language over an alphabet of size k. Then size O
(
(k + 1)kn

)
is sufficient for

a one-unambiguous regular expression describing L(A).

Regarding a lower bound, we note that the witness languages from [30, 39, 49]

showing an exponential succinctness gap between DFAs and regular expressions are

not one-unambiguous, cf. [82]. But in the seminal paper on one-unambiguous regular

expressions [15], they also mention a family of one-unambiguous languages whose

minimal DFA is exponentially more succinct than a minimal one-unambiguous reg-

ular expression. Namely, the language Σ∗a1a2 . . . an—with Σ denoting the input

alphabet and {a1, a2, . . . , an} ⊆ Σ—would incur an exponential blow-up when mov-

ing from a DFA to an equivalent one-unambiguous regular expression. Since that

language obviously admits a regular expression whose size is linear in the size of

the minimal DFA, we are in need for a quite different proof technique. Remarkably,

a proof of the claimed lower bound was provided only recently in [82].

Theorem 29. Let n ≥ 1 and A be an n-state DFA accepting a one-unambiguous

regular language. Then size at least 2Ω(n) is necessary in the worst case for a one-

unambiguous regular expression describing L(A).

Also for the conversion of deterministic finite automata into equivalent one-

unambiguous regular expressions, the tight upper and lower bounds on the succinct-

ness gap need to be investigated. Another witness language for the exponential gap

is given in what follows.

Example 30. For n ≥ 0, let L[n] be the language denoted by the regular expression

((a+ ε)nb)∗an. This language is taken from [82], where it is shown that L[n] can be

accepted by an (n + 1)-state DFA, while every equivalent one-unambiguous regular

expression has size 2Ω(n). The deterministic automaton accepting the language L[3]

is depicted in Figure 9. For the language L[3], a one-unambiguous regular expression

0 1 2 3
a a a
b

b

b

Fig. 9. A four state DFA accepting the language L[3].

of alphabetic width 29 is given by

b∗a (bb∗)
∗
aa
(
bb∗a (bb∗)

∗
a
)∗
aa
(
bb∗a (bb∗)

∗
aa
(
bb∗a (bb∗)

∗
a
)∗
a
)∗
a.

This one-unambiguous regular expression is derived using the construction given in

Thm. G of [15]; for this special case, the algorithm essentially boils down to the
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recursive language equation L[n+1] = L[n]a(bL[n])∗a, with L[0] = b∗. With ordinary

regular expressions, we can describe this language more succinctly as

((a+ ε)(a+ ε)(a+ ε)b)∗aaa,

whose alphabetic width is only 7. The numbers witnessing the succinctness gap

quickly become more striking for larger values of n: for n = 5, the above recur-

rence yields a one-unambiguous regular expression of alphabetic width 125, while

there is a regular expression of alphabetic width only 11. �

Another interesting open problem concerns the succinctness gap between regu-

lar expressions and one-unambiguous regular expressions: the only known technique

for converting a regular expression denoting a one-unambiguous language into an

equivalent one-unambiguous regular expression entails the conversion of the given

expression to a DFA, followed by converting the DFA into a one-unambiguous regu-

lar expression. Recall from Theorem 11 that moving from a regular expression to a

DFA may incur an exponential blow-up, and the above theorem shows that the sec-

ond step is exponential as well. It remains open whether such a double-exponential

blow-up is inherent when moving from regular expressions to one-unambiguous reg-

ular expressions, cf. [25].

Finally, let us note that the conversion problem has been studied also for a few

other special cases of finite automata. Examples include finite automata whose un-

derlying digraph is an acyclic series-parallel digraph [96], Thompson digraphs [41],

and Glushkov automata [18].

Acknowledgments. Thanks to Sebastian Jakobi for helpful comments and sug-

gestions on an earlier draft of this paper, and to Katja Losemann for providing a

full version of [82].
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