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1. Introduction

A famous theorem due to Kleene [25] states that the regular languages admit two

equivalent characterizations of entirely different nature, namely as the languages

accepted by finite automata on the one hand, and as those described by regular

expressions on the other hand. There are a few classical algorithms for converting

finite automata into regular expressions. Those algorithms look different at first

glance [6, 7, 28]. But, as Sakarovitch [32] pointed out, all of these approaches are

more or less reformulations of the same underlying algorithmic idea: they can be

recast as variations of the standard state elimination algorithm. The latter is found

in most textbooks on automata theory, see, e.g., [36].

All of these algorithms have an upper bound of roughly 4n on the size of the

resulting regular expressions, the number n being the number of states in the given

finite automaton. The desire to obtain shorter regular expressions than the 4n

upper bound can be traced back to the work by McNaughton and Yamada [28].

They observed that the choice of the ordering in which the states are eliminated

∗This is a completely revised and expanded version of a paper presented at the 12th Conference
on Developments in Language Theory (DLT) held in Kyoto, Japan, September 16–19, 2008.
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would largely affect the size of the resulting regular expression. Subsequently, several

heuristics for choosing good elimination orderings have been proposed [8, 18, 20, 28].

But none of these yields a provable increase in performance. Such improved up-

per bounds have been obtained by imposing severe restrictions on the structure of

the given finite automata: significantly better upper bounds are known for directed

acyclic [12], unary [13], planar [13], and directed acyclic series-parallel [29] finite au-

tomata. These improvements are partly attained using specialized algorithms that

are different from state elimination. To summarize, previous approaches resulted

either in heuristics for the general case without guaranteed benefit, or in algorithms

with provable performance that apply only to constrained automata.

In the present work, we will perform a balancing act between these two extremes.

The first main result is that deterministic finite automata over binary alphabets can

be converted into regular expressions of size O(1.742n) by state elimination. The

corresponding elimination ordering can be found in polynomial time. In fact, the

same result applies more generally to given nondeterministic finite automata if the

density of transitions is sufficiently low. Our result nicely contrasts with a classical

result by Ehrenfeucht and Zeiger [12], who obtained a lower bound of Ω(2n) if

we allow alphabets of growing size, and with the recently obtained lower bound

of Ω(cn) for some c > 1 for binary alphabets [17]. Note that both lower bounds

apply to given deterministic finite automata as input.

We will also identify a graph connectivity measure that lends itself for a nice

parametrization. Namely, every n-state finite automaton of undirected cycle rank

at most c can be converted into a regular expression of size about 4c · n, instead

of 4n. We will use this parametrization to give significantly improved upper bounds

on the cost of performing the intersection and interleaving operations on regular

expressions. Interestingly, we can show that the size of the resulting expression is

chiefly governed by the size of the smaller operand. If both operands are of roughly

the same size, the new upper bounds are asymptotically optimal, as witnessed by

the matching lower bounds from [17].

2. Definitions

We briefly recall some basic notions in formal language and automata theory — for

a thorough treatment, the reader might want to consult a textbook such as [22].

In particular, let Σ be a finite alphabet and Σ∗ be the set of all words over the

alphabet Σ, including the empty word ε. The length of a word w is denoted by |w|,
where |ε| = 0.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F ),

where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×(Σ ∪ {ε}) →
2Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ S is the set

of accepting states. The language accepted by a finite automaton A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where the transition function δ is extended

to a function from δ : Q × Σ∗ → 2Q in the natural way, i.e., δ(q, ε) = {q}, and
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δ(q, aw) =
⋃

p∈δ(q,a) δ(p, w), for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. A nondeterministic

finite automaton A = (Q,Σ, δ, q0, F ) is a (partial ) deterministic finite automaton,

for short a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In this case we simply

write δ(q, a) = p instead of δ(q, a) = {p}. Two (deterministic or nondeterministic)

finite automata are equivalent, if they accept the same language.

It is well known that finite automata and regular expressions are equally power-

ful, i.e., for every finite automaton one can construct an equivalent regular expres-

sion and vice versa. The regular expressions over Σ are defined recursively in the

usual way:a ∅, ε, and every letter a with a ∈ Σ are regular expressions; and when r1
and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)

∗ are also regular

expressions. The language defined by a regular expression r, denoted by L(r), is

defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1 + r2) = L(r1) ∪ L(r2),

L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)
∗.

The size, or alphabetic width, of a regular expression r over the alphabet Σ,

denoted by alph(r), is defined as the total number of occurrences of letters of Σ in r.

For a regular language L, we define its alphabetic width, alph(L), as the minimum

alphabetic width among all regular expressions describing L. Several other measures

for the size of a regular expression have been proposed, see [13, 21]; it is known that

they are all related by a linear factor. A concept of different nature is star height [11].

It measures the nesting depth of stars, rather than the length of a regular expression.

It is straightforward to give an infinite family of regular languages of star height 1

over some fixed alphabet, while there are only finitely many regular expressions of

any given length.

As with finite automata, the notion of equivalence is defined based on equal-

ity of the described language. Since there is evidence that equivalence of regular

expressions is difficult to determine algorithmically [34], we use the weaker notion

of similarity which is much easier to apply: two regular expressions r and s are

called similar, in symbols r ∼= s, if r and s can be transformed into each other by

repeatedly applying one of the following rules to their subexpressions: (1) r+ r ∼= r,

(2) (r+s)+ t ∼= r+(s+ t), (3) r+s ∼= s+r, (4) r+∅ ∼= r ∼= ∅+r, (5) r ·∅ ∼= ∅ ∼= ∅·r,
(6) r · ε ∼= r ∼= ε · r, and (7) ∅∗ ∼= ε ∼= ε∗. The first three rules above define the

notion of similarity introduced by Brzozowski [5], and the remaining four have been

added because of their usefulness in the context of converting regular expressions

into finite automata.

In the remainder of this section we fix some notations from graph theory. A

directed graph, or digraph, G = (V,E) consists of a finite set of vertices V with

an associated set of edges E ⊆ V × V . If the edge relation E is symmetric, the

graph is said to be undirected. Intuitively, an undirected graph, or just graph, is

obtained from a digraph by forgetting the orientation of the original edges. Further

aFor convenience, parentheses in regular expressions are sometimes omitted and the concatenation
is simply written as juxtaposition. The priority of operators is specified in the usual fashion:
concatenation is performed before union, and star before both product and union.
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we assume familiarity with basic notions from elementary graph theory, such as

(average) degree, (induced) subgraphs, paths, walks, and connected components.

Definitions for missing notions are found in standard textbooks such as [9].

Treewidth is a measure of the structural complexity of graphs that recently

gained popularity, first studied (albeit under a different name) by Halin [19]. This

concept remained largely unnoticed until it was rediscovered by two independent

groups of researchers [2, 31]. These researchers noticed that many hard computa-

tional problems became tractable for graphs of small treewidth. The definition reads

as follows [9]:

Definition 1. Let G = (V,E) be a graph, and assume V = {U1, U2, . . . , Ur} is

a collection of subsets of V . A tree T = (V,E) with vertex set V is called a tree

decomposition, if all of the following conditions hold:

(1) The collection V covers the vertex set of the graph G, in the sense that

V =
⋃

U∈V
U .

(2) For every edge (u, v) ∈ E, there is a tree node U ∈ V such that both u and v

are in U .

(3) If two tree nodes U1 and U2 are connected in the tree by a path, then U1 ∩ U2

is a subset of each tree node visited along this path.

The width of a tree decomposition (V,E) is defined as max{ |U | − 1 | U ∈ V },
and the treewidth of a graph G is defined as the minimum width among all tree

decompositions for G and denoted by tw(G).

We illustrate the concept of treewidth on a small example.

Example 2. Especially in electrical networks, we often encounter graphs that are

recursively built from atomic units using series and parallel composition. An instance

of such a series-parallel graph is depicted in Fig. 1(a). Series-parallel graphs always

admit a tree decomposition of width at most 2, compare [9]. Informally, the tree

decomposition given in Fig. 1(b) exhibits the following pattern: a parallel composition

gives rise to a tree node of cardinality 2, whose children are each of size 3. A series

composition gives rise to a tree node of cardinality 3, whose children are each of

size 2.

Intuitively, the treewidth of a graph measures its structural similarity to a tree.

Not by coincidence, the treewidth of a tree is at most 1, whereas the treewidth of

a complete graph on n vertices equals n − 1. The latter is the maximum possible

treewidth among graphs on n vertices.

We shall need two further complexity measures on graphs — here for a

(di)graph G = (V,E) and U ⊆ V , the subgraph of G induced by U is denoted

by G[U ].

Definition 3. Let G = (V,E) be a graph and U ⊆ V be a set of vertices. A set of

vertices S is a balanced separator for U if every component of G[U \ S] contains
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(a) A series-parallel graph. . .
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{F,G}

{A,E,G}

{A,E} {E,G}

(b) . . . and a tree decomposition.

Fig. 1. An example of a series-parallel graph and a tree decomposition of width 2 for it.

at most 1
2 |U | vertices. The separator number of G, denoted by s(G), is defined as the

maximum size, among all vertex subsets U ⊆ V , of the smallest balanced separator

for U . Formally, let

s(G) = max
U⊆V

min
S⊆U

{ |S| | S is a balanced separator for U }.

Finally, we recall the notion of cycle rank, suggested by Eggan and Büchi in

the course of investigating the star height of regular languages [11]. This concept

was originally defined for directed graphs, compare [11, 17]. In this paper, we shall

restrict our attention to the undirected cycle rank.

Definition 4. The (undirected) cycle rank of a graph G = (V,E), denoted

by cr(G), is inductively defined as follows:

(1) If G has no edges, then cr(G) = 0.

(2) If G consists of a single vertex with a self-loop, then cr(G) = 1.

(3) If G is connected and |V | ≥ 2, then cr(G) = 1 +minv∈V {cr(G− v)}.
(4) f G is not connected, then cr(G) equals the maximum cycle rank among all

connected components of G.

If we consider (undirected) graphs simply as symmetric digraphs, the notions of

cycle rank and undirected cycle rank coincide on graphs. Nevertheless, we sometimes

use the term undirected cycle rank to stress the difference between this and the

concept that applies to digraphs. We note that undirected cycle rank is studied in

the literature under many different names, such as ordered chromatic number, vertex

ranking, tree-depth or minimum elimination tree height, see, e.g., [3, 4, 24, 30].

The following relation between separator number, treewidth, and undirected

cycle rank is known.
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Lemma 5 (Bodlaender et al . [4]) Let G be an undirected graph. Then

s(G)− 1 ≤ tw(G) ≤ cr(G) ≤ 1 + s(G) · logn.

We mention that this result was stated in [4] in terms of elimination tree height,

which is equal to the undirected cycle rank plus one for loop-free graphs.

3. Conversion Algorithms The State Elimination Scheme

There are several algorithms to convert a finite automaton into a regular expression.

Among the most well known ones are the McNaughton-Yamada algorithm and the

state elimination technique. Although these are sometimes considered as different

algorithms, at the core level they are essentially the same [32]. We briefly recall

the state elimination technique, which is the basic algorithm for our considerations.

In order to do this, we need to refine the notion of the computation relation of

an NFA.

Let A = (Q,Σ, δ, q0, F ) be an NFA. A triple (p, a, q) ∈ Q × (Σ ∪ {ε})×Q with

q ∈ δ(p, a) is called a transition of A, which is more conveniently written as p
a→ q.

For a subset U of the state set Q of the finite automaton A and an input word

w ∈ Σ∗, we say that A can go on input w from state j through U to state k, if there

is a computation on input w taking A from state j to k, without going through

any state outside U . Here, by “going through a state,” we mean both entering and

leaving. More formally, A can go on input w from j through U to k if one of the

following three cases applies:

• j = k and w = ε, or

• w ∈ Σ ∪ {ε} and A has a transition j
w→ k, or

• w = xa for some x ∈ Σ∗ and some a ∈ Σ and there is a state r in U such that

both A has a transition r
a→ k and A can go on input x from j through U to r.

With the rôles of j, k and U fixed as above, we now define the language LU
jk as the

set of input words on which the automaton A can go from j to k through U . Then

the essential fact is that L(A) =
⋃

f∈F LQ
q0f

, which can be shown by induction on

the length of a computation.

Now we present an algorithm scheme that became known as state elimination.

Without loss of generality, we will assume that the given NFA A is normalized in the

sense that A has state set Q∪{s, t} where s is the initial state and has no incoming

transitions, and t is the sole accepting state and has no outgoing transitions. Both

algorithms compute regular expressions rUjk satisfying L(rUjk) = LU
jk, for every j, k ∈

Q∪{s, t} and U ⊆ Q. Recall, that LU
jk refers to the set of all words on which A can

go from state j to state k through U . Then we are interested in the expressions rQst
since L(A) = L(rQst). To this end we have to fix an ordering on the states of the

automaton A. It is convenient to write any (total) order on a finite set U as a word,

where the relative position of the letters naturally specifies the order. The (unique)

ordering of the empty set is denoted by ε. Thus, the superscript U in rUjk refers to
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the total order induced by the set U and is assumed to be a word. In particular, we

have L(rεjk) = L∅
jk.

So we fix an order on Q. Let U be a prefix of Q, i.e., the order induced by U is

compatible with the order on Q. Moreover we assume that i is the next state in the

order after the states in U — in other words, that U · i is a prefix of Q. Observe

that the set of words on which A can go from state j to state k through U ∪ {i}
obeys

L
U∪{i}
jk = LU

jk ∪ LU
ji · (LU

ii)
∗ · LU

ik. (1)

So, we are led to the identity

rU·i
jk = rUjk + rUji · (rUii )∗ · rUik (2)

on regular expressions, for every j, k ∈ Q ∪ {s, t} and every U · i that is prefix of

the ordered set Q. To complete the description of this algorithm the base cases are

defined to be

rεjj = ε+
∑

j
a
→j

a∈Σ∪{ε}

a

and

rεjk =
∑

j
a
→k

a∈Σ∪{ε}

a, for j 6= k.

Hence for an ordered subset U of Q, let RU = (rUjk)j,k∈Q∪{s,t} denote the regular

expression matrix obtained after eliminating U . The state elimination algorithm

computes the regular expressions rUjk, for any prefix U of Q.

Since we are only interested in the expression rQst, one only needs to generate

those intermediate expressions that are eventually needed for the final result. As

already observed by Brzozowski and McCluskey [6] one does not need to compute

any expressions rUjk with j ∈ U or k ∈ U . That is, after the state i has been added

to the set U , we can discard both the ith row and the ith column from the regular

expression matrix, hence the name “state elimination.” A further slight enhancement

of the algorithm concerns the use of the similarity relations we introduced earlier.

With a straightforward implementation one can ensure that rUjk = ∅ if and only if

LU
jk = ∅. To illustrate the above description, we give a small example.

Example 6. Imagine a software buffer supporting the actions “a” (“add work

item” ) and “b” (“remove work item” ), with a total capacity of n items. Let Ln

denote the set of action sequences that result in an empty buffer and never cause

the buffer to exceed its capacity. For illustration, a minimum DFA for L4 is depicted

in Fig. 2. The following two regular expressions

(ab)∗ + (ab)∗aa (ab+ aa(ba)∗bb+ bb(ab)∗aa+ ba)∗ bb(ab)∗

and
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Fig. 2. A minimal DFA accepting L4.

(

a
(

a (a(ab)∗b)∗ b
)∗

b
)∗

both denote the language L4.

Indeed, both expressions can, after normalizing the automaton, be ob-

tained by state elimination. The first expression is obtained by eliminating the

states 1, 3, 0, 4, 2, in this order. The second expression is obtained by eliminating

the states in the order 4, 3, 2, 1, 0. The relevant parts of the computation for the first

expression are illustrated in Tables 1, 2, and 3; the analogous computation for the

second expression is left as an easy exercise to the reader.

The size of the regular expression resulting from applying the state elimination

algorithm to a — not necessarily normalized — automaton has been analyzed in [13].

Table 1. The initial matrix with regular expression entries.

from \ to s t 0 1 2 3 4

s ε ∅ ε ∅ ∅ ∅ ∅
t ∅ ε ∅ ∅ ∅ ∅ ∅
0 ∅ ε ε a ∅ ∅ ∅
1 ∅ ∅ b ε a ∅ ∅
2 ∅ ∅ ∅ b ε a ∅
3 ∅ ∅ ∅ ∅ b ε a

4 ∅ ∅ ∅ ∅ ∅ b ε

Table 2. The matrix obtained after eliminating states 1 and 3.

from \ to s t 0 2 4

s ε ∅ ε ∅ ∅
t ∅ ε ∅ ∅ ∅
0 ∅ ε ε+ ab aa ∅
2 ∅ ∅ bb ε+ ab+ ba aa

4 ∅ ε ∅ b ε+ ba

Table 3. The matrix obtained after eliminating states 1, 3, 0, and 4.

from \ to s t 2

s ε (ab)∗ (ab)∗aa
t ∅ ε ∅
2 ∅ bb(ab)∗ ε+ ab+ ba+ aa(ab)∗bb+ bb(ab)∗aa
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Their analysis is based on the equation L(A) =
⋃

f∈F LQ
q0f

. This produces a regular

expression of alphabetic width at most |Σ| ·n ·4n. In the form described above, state

elimination normalizes the automaton first. Compared to the result from [13], we

now save a factor of n:

Theorem 7. Let A be an n-state NFA with input alphabet Σ. Then the state elim-

ination algorithm produces, for every ordering on the states, a regular expression

describing L(A) of alphabetic width at most |Σ| · 4n.

The state elimination algorithm we just saw should be called an algorithm

scheme rather than an algorithm, since there remains some degree of indetermi-

nacy: in each round, a new state is added to the working set U . Thus the order

in which the states are eliminated, one after another, forms a parameter of an

algorithm scheme, and every such elimination ordering gives rise to a different in-

stance of that scheme. Already in 1960, McNaughton and Yamada observed that

the choice of an elimination ordering can greatly influence the resulting regular ex-

pression size [28]. The running time of state elimination is in O(|r| · n3), where r

is the regular expression produced. The choice of an elimination ordering thus also

affects the performance of the algorithm.

4. Undirected Cycle Rank and Elimination Orderings

We start our investigation of elimination orderings with some bad news: namely, by

the work of Ehrenfeucht and Zeiger [12] there are normalized deterministic finite

automata with n+2 states, for which every elimination ordering will give a regular

expression of the same size 4n. This imposes severe limitations on what we can

expect, in the worst case, from the state elimination scheme.

Nevertheless, a few heuristics to choose good elimination orderings have been

proposed in the literature. McNaughton and Yamada [28] proposed to identify the

states that “bear the most traffic,” i.e., those vertices in the underlying graph with

the highest degree, and to eliminate these states at last. Put another way, this

amounts to ordering the states with respect to their degree. Delgado and Morais

took this idea further [8]: instead of the vertex degree, a more elaborated weight

function is used. This weight function takes into account the indegree, the outdegree

and the current size of each intermediate expression. Since the respective values of

these parameters change during state elimination, the weight function is recomputed

after each elimination step, and the state of least weight is eliminated next.

Moreira and Reis [29] identified a class of finite automata for which the

conversion problem is tractable, namely those whose underlying structure is an

acyclic series-parallel digraph. Gulan and Fernau [18] proposed to search for such

acyclic series-parallel digraphs as substructures in general finite automata. Han and

Wood [20] suggested to identify serial or parallel composition patterns along which a

given finite automaton could be recursively decomposed. All of the above heuristics

can be easily implemented by means of elimination orderings. Of course, we cannot



March 7, 2014 8:53 WSPC/INSTRUCTION FILE S0129054113500330

1264 H. Gruber & M. Holzer

expect to find such nice substructures in too many finite automata: for instance,

although the finite automaton from Example 6 has extremely simple structure, both

of these two heuristics fail on that input; the same applies to Example 11 below.

Ellul et al. [13] encompassed the class of planar finite automata. They give a

recursive algorithm with a nontrivial performance guarantee based on the planar

separator theorem [26]. That procedure is seemingly more difficult to implement

than a mere state elimination strategy. Below we will simplify and generalize the

idea of using separators, and recast it in terms of state elimination.

Before we study the quest for good elimination orderings in more detail, we now

proceed to the first main technical lemma of this section.

Lemma 8. Let A be a normalized NFA with state set {s, t} ∪ Q, and let G be the

digraph underlying the transition structure of A. Assume U ⊆ Q can be partitioned

into two sets T1 and T2 such that the induced subgraph G[U ] falls apart into the

mutually disconnected graphs G[T1] and G[T2]. Let j and k be vertices with j, k ∈
{s, t}∪Q\U . Then for the expression rT1·T2

jk obtained by elimination of the vertices

in T1 followed by elimination of the vertices in T2 holds

rT1·T2

jk
∼= rT1

jk + rT2

jk . (3)

Proof. We prove the statement by induction on |T1|+ |T2|. The induction is rooted

at |T1|+|T2| = 0. For the case T2 is empty, we have in general rT1T2

jk = rT1

jk
∼= rT1

jk+rεjk,

as desired.

For the induction step, let |T1|+ |T2| = n, with T2 6= ∅. Let τ be the last element

in T2, that is, T2 = Tτ for some prefix T of T2. Then

rT1T2

jk
∼= rT1T

jk + rT1T
jτ · (rT1T

ττ )∗ · rT1T
τk . (4)

Since |T1|+|T | = n−1, for the first of the three subexpressions on the right-hand side

the induction hypothesis applies: rT1T
jk

∼= rT1

jk +rTjk. For the last three subexpressions,

we claim that rT1T
jτ

∼= rTjτ , as well as
(

rT1T
ττ

)∗ ∼=
(

rTττ
)∗

, and rT1T
τk = rTτk. We only

prove the first and the second similarity congruence, because the third is proved

symmetrically to the first.

It suffices to prove rT1

jτ
∼= rεjτ , since both sides of the congruence rT1T

jτ
∼= rTjτ

are obtained from the mentioned one by eliminating T , and state elimination pre-

serves similarity of expressions. If Lε
jτ is nonempty, then these words are already

described by rεjτ . It only remains to show that no further words are introduced by

eliminating T1. So, for simplicity of exposition, we may as well assume that Ljτ = ∅
and prove the congruence for this case. This can be done as follows: consider the

subgraph G[U ]. By assumption of the lemma, τ ∈ T2 is not reachable from any

vertex in T1, thus the automaton cannot go from j to τ through any state in T1

on any input at all, and since there is no direct connection from j to τ either, the

language LT1

jτ is empty. Every regular expression describing the empty set is similar

to the expression ∅, hence rT1

jτ
∼= ∅. This completes the proof of the congruence for

this subexpression. Similar to above, the second congruence will follow once we have
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established that rT1

ττ
∼= rεττ . This is easy to see since any computation path from τ

to τ through T1 (other than those implied by the empty input ε, or by a single

self-loop directly returning back to τ itself) would witness that τ is connected to

the subgraph T1; but since τ is in T2 this would contradict our assumption.

By plugging the three congruences for the subexpressions into Congruence 4, we

obtain

rT1T2

jk
∼= rT1

jk +
[

rTjk + rTjτ
(

rTττ
)∗

rTτk

]

.

The right hand side is of course similar to rT1

jk + rT2

jk , by definition of the state

elimination scheme.

Remark. To prevent potential misunderstandings, we recall that, by our nota-

tional convention, Congruence 3 assumes an arbitrary but fixed ordering on T1T2,

which naturally induces an ordering on all of its subsets, including T1 and T2. Equiv-

alently, one can assume each an arbitrary but fixed ordering for the two subsets T1

and T2. Then these jointly define an ordering on T1T2.

The next theorem identifies a parameterized restriction on the transition struc-

ture of finite automata that gives rise to a large class of tractable instances of

the conversion problem. This parameter is the undirected cycle rank as given in

Definition 4. For convenience, we speak of the undirected cycle rank of a finite

automaton A to refer to the undirected cycle rank of the underlying graph.b

Theorem 9. Let A be an n-state NFA, and let c be a positive integer. If A has

undirected cycle rank at most c, then there is a regular expression for L(A) having

size at most |Σ| · 4c · n.

The theorem is indeed a special case of the following slightly more general tech-

nical lemma, which we will prove instead:

Lemma 10. Let A be a normalized NFA with state set {s, t} ∪ Q, let G be its

underlying graph, and let c be a positive integer. Let U ⊆ Q be such that G[U ] has

undirected cycle rank at most c. Then there is an elimination ordering for U which

yields, for each pair j, k of states not in U , a regular expression rUjk of size at most

|Σ| · 4c · |U |.

Proof. We prove the statement by induction on the number of states in the set U .

In the base case U = {u}, the (undirected) cycle rank of G[U ] is at most c, and

with the aid of Eq. (2), it is readily verified that

alph
(

rUjk
)

≤ 4 · |Σ| ≤ |Σ| · 4c · |U |;
recall that c is a positive integer.

bBeware that the undirected cycle rank of a finite automaton can largely differ from its directed

cycle rank, the latter being used in [17].



March 7, 2014 8:53 WSPC/INSTRUCTION FILE S0129054113500330

1266 H. Gruber & M. Holzer

For the induction step, we consider two cases: if the graph G[U ] is disconnected,

then it falls apart into the components C1, C2, . . . , Cℓ, each having at most |U | − 1

vertices. By induction hypothesis, for each component Ci, there is an ordering for Ci

such that for each pair of states j, k not in U , the regular expression rCi

jk resulting

from this ordering satisfies

alph
(

rCi

jk

)

≤ |Σ| · |Ci| · 4c. (5)

Here we can use the same constant c as for U , since the cycle rank of Ci is at most

as large as the cycle rank of U . Fix such an ordering for each of the components

C1, C2, . . . , Cℓ, and take the sum of these expressions, that is,
∑ℓ

i=1 r
Ci

jk . By applying

Lemma 8 as often as needed, we see that the regular expression rC1C2···Cℓ

jk , which is

obtained by eliminating according to the ordering C1C2 · · ·Cℓ, is similar to the sum
∑ℓ

i=1 r
Ci

jk — recall that when applying Lemma 8, we assume arbitrary but fixed

individual orderings on each set Ci. Using Inequality (5), the latter expression has

alphabetic width at most

ℓ
∑

i=1

|Σ| · |Ci| · 4c = |Σ| · |U | · 4c.

Otherwise, by the definition of cycle rank there must be a vertex u in G[U ] such

that G[U \ {u}] has cycle rank at most c− 1. By induction hypothesis, there is an

ordering on U \ {u} such that for each pair of states j, k not in U \ {u}, the regular

expression r
U\{u}
jk resulting from this ordering satisfies

alph
(

r
U\{u}
jk

)

≤ |Σ| · (|U | − 1) · 4c−1. (6)

Finally, eliminating u as last state can incur a size increase by a factor of at most 4.

This shows the desired inequality in the second case.

The undirected cycle rank of a graph G can be defined equivalently as the

minimum height among all elimination forests for G [4, 27]. We note that the post-

order traversal of an elimination tree (of height at most k) yields the elimination

ordering referred to in Lemma 10. Unfortunately, determining the undirected cycle

rank is NP-complete in general, as proved by Pothen (cf. [3]). On the positive side,

the undirected cycle rank problem can be approximated in polynomial time within

a factor of O((log n)
3

2 ) [14], and it is fixed-parameter tractable [3]. Such algorithms

may be used for actually finding suitable elimination orderings, whose existence is

implied by Lemma 10.

Theorem 9 has further algorithmic consequences: for instance, it is known [24]

that planar graphs on n vertices have cycle rank in O(
√
n). With Theorem 9, one

can show that an n-state planar finite automaton can be converted into a regular

expression of size 2O(
√
n), just by state elimination. The same bound was obtained

previously by Ellul et al. [13] using a more complicated algorithm. We shall see an-

other application of Theorem 9 in the section that now follows. When investigating
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language operations on regular expressions in Sec. 6, we will present still more

consequences of this theorem.

5. Converting DFAs into Regular Expressions: An Upper Bound

Although we cannot assume that DFAs in general have small undirected cycle rank,

we can still try to look for large induced subgraphs that have small undirected

cycle rank. The reason is here that after eliminating the vertex set U of an induced

subgraph having undirected cycle rank c, the generated intermediate expressions

are of size 4c · |U |, in place of 4|U|. This advantage is more prominent if U is very

large, while c ≪ |U |: ideally, we want to find an induced subgraph of very low cycle

rank, while being so large that it contains already a constant fraction of all vertices.

If |U | = γ · n, for some γ bounded away from zero, then eliminating the remaining

(1−γ)n states can increase the size of the intermediate expressions “only” by a factor

of 4(1−γ)n. If the intermediate expressions resulting from eliminating the first, easier

half are of size (say) 2o(n), we will finally end up with a regular expression of size

2o(n) · 4(1−γ)n = o(4n). In such a case, we have thus reduced the original problem

to a problem kernel of size (1− γ)n.

We will elaborate upon this idea in more detail in the following. To gain a bit

more intuition, let us take a look at a relatively simple example first:

Example 11. For illustrating the above said, consider the language

(a1b1)
∗
x (a2b2)

∗
x (a3b3)

∗,

where the interleaving, or shuffle, of two languages L1 and L2 over alphabet Σ is

L1 x L2 = {w ∈ Σ∗ | w ∈ x x y for some x ∈ L1 and y ∈ L2 },
and the interleaving x x y of two words x and y is defined as the set of all words of

the form x1y1x2y2 · · ·xnyn, where x = x1x2 · · ·xn, y = y1y2 · · · yn with xi, yi ∈ Σ∗,
for n ≥ 1 and 1 ≤ i ≤ n. Note that in this definition, some of the subwords xi

and yi can be empty.

This language can be accepted by a DFA over the state set {0, 1}3, and whose

partial transition function is given such that input ai sets the ith bit left of the

rightmost bit of the current state from 0 to 1, and input bi resets the ith bit, again

counting from right to left, of the current state from 1 to 0. All other transitions

are undefined. Formally, we can set out a matrix with regular expression entries as

shown in Table 4.

The initial state is 000, which is also the single final state. Notice that the graph

underlying this automaton is the 3-dimensional cube, with 8 vertices; and gener-

alizing this example to d ≥ 3, the underlying graph would be the d-dimensional

hypercube, with 2d many vertices. Normalizing this automaton amounts to adding

two new states s and t and adding appropriate ε-transitions.

It is well known that the d-dimensional hypercube admits a large induced subgraph

of very low undirected cycle rank: the hypercube is 2-colorable, and thus has an
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Table 4. The initial matrix with regular expression entries. The
rows and columns for the states s and t are omitted (all corre-
sponding entries are equal to either ε or ∅).

from \ to 000 001 010 011 100 101 110 111

000 ε a1 a2 ∅ a3 ∅ ∅ ∅
001 b1 ε ∅ a2 ∅ a3 ∅ ∅
010 b2 ∅ ε a1 ∅ ∅ a3 ∅
011 ∅ b2 b1 ε ∅ ∅ ∅ a3

100 b3 ∅ ∅ ∅ ε a1 a2 ∅
101 ∅ b3 ∅ ∅ b1 ε ∅ a2

110 ∅ ∅ b3 ∅ b2 ∅ ε a1

111 ∅ ∅ ∅ b3 ∅ b2 b1 ε

independent set that contains at least half of the vertices. Notice that an independent

set always has undirected cycle rank at most 1. For instance, if we eliminate the set

U = {001, 010, 100, 111} first, we end up with a matrix having entries as shown in

Table 5. Not surprisingly, for the resulting regular expressions holds

rUjk
∼= r001jk + r010jk + r100jk + r111jk .

This can also be seen by applying Lemma 8 as often as needed.

Of course, the resulting matrix has many more nontrivial entries than before.

But the largest entry has alphabetic width only 6, although we already eliminated half

of the original number of states. Continuing the elimination with the matrix from

Table 5 we will end up with a regular expression of size at most 6 · 4|Q\U| ≤ 1536,

even for the worst ordering of the remaining states in Q\U . Now we can again look

for a large independent set in the resulting matrix. Yet a look at Table 5 shows that,

in our small example, all independent sets in the resulting graph are only of size 1.

While the bound 1536 may appear large at first glance, recall that the upper bound

predicted by Lemma 7 would be as huge as 48 = 65536. Also, notice that the two

bounds are both overestimations of the actual resulting expression size.

The above example suggests to look out for large independent sets in the un-

derlying graph, and to eliminate these first. We cannot expect a large independent

set in the graph underlying the DFA if the alphabet size is not fixed: in the DFAs

exhibiting worst-case behavior investigated by Ehrenfeucht and Zeiger [12], the un-

derlying graph has no independent sets of size greater than 1. But once we require

constant alphabet size, the graph underlying the DFA is sparse, i.e., it can have

only a linear number of edges. A classical theorem in extremal graph theory due to

Turán [35] states that sparse graphs do always contain large independent sets:

Theorem 12 (Turán [35]) If G is an n-vertex graph of average degree d, then G

admits an independent set having at least n

d+1
many vertices.

By generalizing the analysis carried out in Example 11 to the case of an inde-

pendent set U of size |U | = n

d+1
, this enables us to give a general upper bound. The
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proof of the following theorem is based on the fact that eliminating an independent

set can cause only a bounded increase of the maximum outdegree of the underlying

digraph, and thus we can apply Turán’s Theorem again for the resulting digraph.

Theorem 13. Let A be an n-state DFA with input alphabet Σ of constant size.

Then there is an elimination ordering which yields a regular expression for L(A)

having size at most nO(1) ·4αn, with α = 2|Σ|·2|Σ|2·2|Σ|4
(2|Σ|+1)(2|Σ|2+1)(2|Σ|4+1) . This ordering can

be computed in time polynomial in n.

We shall not report the details of the proof here, as we shall derive a better

bound in the following. Recall that our basic idea is that we want to look for large

induced subgraphs whose elimination is cheap in the sense that the intermediate

expressions are of size 2o(n). For independent sets, which have cycle rank at most 1,

this intermediate size is indeed at most O(n), as implied by Lemma 10. Thus we

can safely look for induced subgraphs with more complex structure allowed. Alon

et al. [1] found a generalization of Turán’s theorem. Although they used the concept

of degeneracy, and not treewidth, a special case of their result can be phrased in

terms of treewidth as follows:

Theorem 14 (Alon et al . [1]) If G is an n-vertex graph of average degree at

most d, with d ≥ 2, then G admits an induced subgraph of treewidth at most 1 that

has at least 2n
d+1

many vertices.

We point out that independent sets are exactly the induced subgraphs of

treewidth zero. The following recent result, due to Edwards and Farr [10], provides

a nice analog to Turán’s Theorem and to Theorem 14:

Theorem 15 (Edwards and Farr [10]) If G is an n-vertex graph of average de-

gree at most d, with d ≥ 2, then G admits an induced subgraph of treewidth at most 2

that has at least 3n
d+1

many vertices.

The interpretation of these extremal theorems in terms of treewidth appears to

be new, since treewidth is not mentioned in any of the papers [1, 10, 35]. Now we

are ready to state the main result of this section.

Theorem 16. Let A be an n-state DFA with input alphabet Σ. Then there is an

elimination ordering which yields a regular expression for L(A) having size at most

4 · |Σ| · n7 · 4αn, with α = 1 − 3
2·|Σ|+1 . In particular, for |Σ| = 2, this bound is in

O(1.742n).

Proof. Assume the given DFA has state set Q. In a first step, we normalize the DFA

by adding a new initial state s as well as a single new final state t and connecting

them with Q appropriately. Note that, while normalizing might increase the number

of edges in the undirected graph G underlying the automaton, this process does not

affect the average degree of the induced subgraph G[Q], since all new edges begin
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or end outside the set Q. Hence, the average degree of G[Q] is at most 2 · |Σ|, both

before and after the normalization.

To find a good elimination ordering, we choose to eliminate first the vertex

set U of a large induced subgraph of treewidth at most 2 from G[Q]. Since 2 · |Σ|
constitutes an upper bound on the average degree of G[Q], by Theorem 15 we can

choose U to be of cardinality at least 3n
2·|Σ|+1 = (1− α)n.

Recall from Lemma 5 that graphs on n vertices of treewidth at most k have

undirected cycle rank at most 1 + (k + 1) logn. In this way, we get cr(G[U ]) ≤
1 + 3 log |U |. Let the latter number be denoted by c. By Lemma 10, the set U can

be ordered in a way such that for all j, k not in U holds alph
(

rUjk

)

≤ |Σ| · 4c · |U |.
Now we continue with eliminating the remaining states, by choosing an arbitrary

ordering for the states in U = Q \ U . During the second phase, eliminating a state

in U can increase the size of the intermediate expressions by a factor of at most 4

each time. Thus, we have:

alph
(

rQst

)

≤ |Σ| · 4c · |U | · 4U .

With c ≤ 1 + 3 log |U |, we obtain

4c = 22·(1+3 log |U|) ≤ 4 · |U |6.
Combined with the inequality

∣

∣U
∣

∣ = n− |U | ≤ αn, we get an upper bound of

alph
(

rQst

)

≤ |Σ| · 4 · |U |6 · |U | · 4αn ≤ 4 · |Σ| · n7 · 4αn.

For |Σ| = 2, we have 4α = 4
2

5

.
= 1.7411, and thus n7 · 4 2

5
n ∈ O(1.742n).

The reader may find that there is no apparent reason to stop at this point. For

instance, we could further generalize the above approach and look for large induced

planar subgraphs. For, it can be proved that eliminating an induced planar subgraph

still yields intermediate regular expressions of size 2o(n). Yet it is impossible to

guarantee essentially larger size when allowing planar induced subgraphs. The above

mentioned work [10] discusses this issue at greater depth.

6. Alphabetic Width of Intersection and Interleaving

We turn to questions regarding the succinctness of regular expressions with respect

to various language operations. This topic has recently received some attention —

not only because of its fundamental nature, but also because of applications in XML

processing — see, e.g., [13, 16, 17]. We shall focus on the operations intersection and

interleaving. Recent results [16, 17] imply that the intersection operation has expo-

nential cost. Similar results are shown in [15, 17] for the interleaving operation. The

currently best known lower bounds are derived in [17] — here the two-parameter

function alph(◦,m, n), for some binary language operation ◦, is defined as the maxi-

mum alphabetic width of L(r2)◦L(r2), where the maximum is taken over all regular

expressions r1 and r2 having sizes at most m and n, respectively.
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Theorem 17 (Gruber and Holzer [17]) There exists a constant c > 1 such that

for all m ≤ n holds alph(∩,m, n) = cm and alph(x,m, n) = cm, and this holds for

all alphabets of size at least 2.

As detailed by Ellul et al. [13], the naïve idea of converting the operand expres-

sions over Σ into finite automata, performing a product construction, and converting

the result back to a finite automaton gives a preliminary upper bound of

|Σ| · 4(m+1)(n+1) ≤ max(m,n) · 4(m+1)(n+1) ≤ dmn, for some constant d.

As we shall see, the easy upper bound by Ellul et al. [13] can be substantially

improved by choosing an appropriate elimination ordering according to some graph-

theoretic properties, similar to the considerations carried out in Sec. 4. We need to

introduce a notion of products on graphs first.

Definition 18. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The categor-

ical product G1 ⊗ G2 is defined as the graph with vertex set V1 × V2 and edge set

{ {(u1, u2), (v1, v2)} | {u1, v1} ∈ E1 and {u2, v2} ∈ E2 }.

Observe that this product on graphs bears a striking similarity to the standard

product construction on finite automata for realizing the intersection of regular

languages, compare [22]. We have seen in Theorem 9, that the connectivity of the

graph underlying a finite automaton can largely affect the complexity of the conver-

sion problem into regular expressions. We thus inspect next how the connectivity

of graphs evolves under taking such products.

Theorem 19. Let G1 and G2 be two graphs, each having separator number at

most k. Assume G1 and G2 have m and n vertices, respectively, with m ≤ n.

Then for the undirected cycle rank of the categorical product G1 ⊗G2 holds:

cr(G1 ⊗G2) < k ·m ·
(

log
n

m
+ 4

)

.

Proof. The basic idea is to search in the product graph for certain balanced separa-

tors, whose existence is implied by the presence of balanced separators in the factor

graphs. If we search for a balanced separator of size at most k in the larger factor

graph (say) G2, this separator gives rise to a balanced separator of size only k ·m in

the product graph. In contrast, the separator halves the maximum size among the

connected components of the larger factor graph, and also of the product graph.

This idea is illustrated in Fig. 3. We proceed by recursively halving the parts of G2,

until the resulting parts become smaller than |V1| = m. Then we look for separators

in G1, and proceed recursively until the size of the parts has sufficiently decreased

such that we switch again, to continue working with the parts of G2, and so on.

In order to turn this idea into a rigorous proof, we start off with a few observa-

tions regarding the categorical product of graphs:

(1) First, the categorical product is commutative in the sense that G1 ⊗ G2 is

isomorphic to G2 ⊗G1.
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V1 × SV1 × C1 V1 × C2

m

n/2 k n/2

Fig. 3. Schematic drawing of the product graph G1 ⊗G2 for the case where G1 has vertex set V1

of size m, G2 has vertex set V2 = C1 ∪ C2 ∪ S of size n, with C1 and C2 separated by S in G2.
Looking for a separator in G2 induces a much smaller balanced separator for G1 ⊗G2 if m ≪ n.

(2) Second, for U1 ⊆ V1 and U2 ⊆ V2, the subgraph of G1 ⊗G2 induced by U1×U2

is the same as the categorical product of the induced subgraphs G1[U1] and

G2[U2]. In symbols, we have the equation

(G1 ⊗G2)[U1 × U2] = (G1[U1])⊗ (G2[U2]). (7)

(3) Third, if S1 ⊆ V1 is a balanced separator for G1, then S1 × V2 is a balanced

separator for G1 ⊗G2. This can be seen as follows: each walk
(

v
(1)
i1

, v
(2)
j1

)

→ · · · →
(

v
(1)
i2

, v
(2)
j2

)

→ · · · →
(

v
(1)
ik

, v
(2)
jk

)

in the product graph G1 ⊗G2 naturally projects down to a corresponding walk

v
(1)
i1

→ · · · → v
(1)
i2

→ · · · → v
(1)
ik

in G1. In the contrapositive, if G1 has the property that every walk in G1

connecting v
(1)
i1

to v
(1)
ik

passes through S, then G1 ⊗G2 has the property that

every walk in G1⊗G2 connecting a vertex of the form
(

v
(1)
i1

, w(2)
)

to a vertex of

the form
(

v
(1)
ik

, x(2)
)

, with w(2), x(2) ∈ V2, necessarily also visits a vertex from

S×V2. In particular, if G1−S has the components C1, C2, . . . , Cℓ, then the sets

C1 × V2, C2 × V2, . . . , Cℓ × V2 are subsets of pairwise different components in

the product graph. If S is a balanced separator for G1, none of the components

in G1 −S can have size larger than 1
2m; accordingly none of the components in

(G1 ⊗G2)[(V1 \ S)× V2] can have size larger than 1
2m · n, and thus S1 × V2 is

a balanced separator for the product graph.

(4) Lastly, combining the second with the third observation, we see that if S is a

balanced separator for U1 ⊆ V1 in G1, then S × U2 is a balanced separator for

U1 × U2 in the product graph G1 ⊗G2.

At this point, we have collected enough information to put forward a recurrence.

To this end, for real numbers 0 ≤ β ≤ m and 0 ≤ η ≤ n, let cr(β, η) denote the

maximum cycle rank among the induced subgraphs G[U1×U2], where the maximum

is taken subject to U1 ⊆ V1, |U1| ≤ β and U2 ⊆ V2, |U2| ≤ η. Then, clearly we have

cr(G1 ⊗G2) = cr(m,n).
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Now the function cr(β, η) can be bounded above using the following recurrence,

as we explain below:

cr(β, η) ≤















1 for β, η < 2,

cr(η, β) for 2 ≤ η < β,

kβ + cr
(

β, η
2

)

otherwise.

(8)

The base case of the recurrence is justified by the fact that the cycle rank of any

graph is of course bounded above by its number of vertices. The second case is cor-

rect because the categorical product is commutative, and taking products commutes

with taking induced subgraphs of its factors in the sense of Eq. (7). Correctness of

the third case of the recurrence is explained as follows: consider an induced sub-

graph G′ of the form G′ = G1[U1]⊗G2[U2], with U1 ≤ β and U2 ≤ η, and β ≤ η. As

the graph G2[U2] admits a balanced separator S of size at most k, the product G′

admits a balanced separator of size at most k · |U1| ≤ k · β. Since removing a set of

vertices of size |U1×S| from G′ can decrease its cycle rank at most by that number,

we have

cr(G′) ≤ |U1 × S|+ cr(G′ − S) ≤ k · β + cr(G′ \ S).

If the components of G2[U2 \S] are denoted by C1, C2, . . . Cℓ, then by the definition

of cycle rank

cr(G′ − S) = max
1≤i≤ℓ

cr(G[U1 × Ci]).

Finally, because each Ci has cardinality at most η
2 , each subgraph G[U1 × Ci] can

have cycle rank at most cr(η2 , β). Altogether, this shows that the Recurrence (8)

gives a correct upper bound.

For the analysis of this recurrence, assume without loss of generality that β ≤ η.

We observe first that when evaluating cr, eventually the parameters β and η are

decreased in alternating order with each recursive call. Namely, for the parameter

range 1 < β ≤ η < 2β, we see by partial unrolling that

cr(β, η) ≤ k · β + cr
(

β,
η

2

)

≤ k · β + cr
(η

2
, β

)

≤ k · β +
1

2
k · η + cr

(

η

2
,
β

2

)

≤ k ·
(

β +
1

2
η

)

+ cr

(

β

2
,
η

2

)

< 2k · β + cr

(

β

2
,
η

2

)

.

In this way, we have halved both parameter values appearing in the recurring ex-

pression. By unrolling the recurrence thus obtained and simplifying, we obtain for
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this range of parameter values:

cr(β, η) ≤
∑

0≤i<log β

2k · β
2i

+ cr(1, 1) <

∞
∑

i=0

2k · β
2i

= 4k · β.

We can thus keep for later reference that

cr(β, η) < 4k · β, for 1 < β ≤ η < 2β. (9)

It remains to reduce the case η ≥ 2β to the balanced case we just discussed. To

this end, let x =
⌊

log
(

η
β

)⌋

denote the integer part of log
(

η
β

)

. When applying the

Recurrence (8) for x times, the second parameter always remains larger than the

first, until we reach the following inequality:

cr(β, η) ≤ k · β · x+ cr(β, 2−x · η). (10)

Now let y denote the fractional part of log η
β
. Then 2−x−y = β

η
, or, equivalently,

2−x · η = 2y · β. Using 0 ≤ y < 1, we get β ≤ 2−x · η < 2β, and thus we can apply

Inequality (9) to estimate the remaining recurrent expression on the right-hand-side

of Inequality (10) and get:

cr(β, η) ≤ k · β · x+ cr(β, 2−x · η)
< k · β · x+ 4k · β

= k · β ·
(

log
η

β
+ 4

)

.

Since cr(G1 ⊗G2) = cr(m,n), the proof is completed.

Now an upper bound for the alphabetic width of the intersection operation can

be derived as follows:

Theorem 20. There exists a constant d such that for all m ≤ n, and for arbitrary

alphabets, alph(∩,m, n) ≤ n · dm·(1+log n
m ) holds.

Proof. Assume we are given two regular expressions r1 and r2 over a common

alphabet Σ, of size m and n, respectively. These expressions can be transformed

into equivalent NFAs A1 and A2 having m+1 and n+1 states using the conversion

algorithm given in [23]. As observed by the authors in [17], the graphs G1 and G2

underlying the resulting automata are of treewidth at most 2, which is a feature of

that particular conversion algorithm.

We apply the product construction to A1 and A2 to obtain an NFA A1 ⊗ A2

with (m+ 1)(n+ 1) states accepting the intersection of L(r1) and L(r2).

Since the possibly present ε-transitions cause a minor technical issue, we briefly

recall the details of this construction. Given two NFAs Ai = (Qi,Σ, q0,i, δi, Fi), for

i ∈ {1, 2}, let A1 ⊗ A2 = (Q1 ×Q2,Σ, (q0,1, q0,2), δ, F1 × F2), where the transition

function δ is defined as follows: transitions on letters a ∈ Σ are given by (q1, s2) ∈
δ((p1, r2) , a) iff both q1 ∈ δ1(p1, a) and s2 ∈ δ2(s2, a). Transitions on the empty
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word are given by (q1, s2) ∈ δ((p1, r2) , ε) iff both q1 ∈ {p1} ∪ δ1(p1, ε) and s2 ∈
{r2}∪δ2(r2, ε). It is easy to see that A1⊗A2 accepts the intersection L(A1)∩L(A2).

Now we are interested in the cycle rank of the undirected graph underlying the

automaton A1 ⊗A2. Observe that the latter is a subgraph of the product G′
1 ⊗G′

2,

where the graph G′
i is obtained from Gi, for i = 1, 2, by adding a self-loop to each

vertex. The graphs Gi have treewidth at most 2, and by Lemma 5 their separator

number is at most 3 each. Adding self-loops to a graph does not increase its separator

number. Thus the factors G′
1 and G′

2 still have separator number at most 3.

Now we are in a position allowing us to apply Theorem 19, and we deduce that

there is some constant d′ such that the product graph G′
1 ⊗ G′

2 has cycle rank at

most d′ ·m log n
m

. Recall that Theorem 9 states that all NFAs of low cycle rank can

be converted into sufficiently short regular expressions. In our case, the theorem

implies that

alph(L(A1 ×A2)) ≤ |Σ| · 4d′·m log n
m (m+ 1)(n+ 1) .

With |Σ| ≤ min{m,n} = m and m+1 ≤ 4logm for m ≥ 2, this can be estimated by

alph(L(A1 ×A2)) ≤ (n+ 1) · 4d′·m log n
m

+2 logm

≤ (n+ 1) · 43d′·m log n
m ,

which holds for n ≥ m ≥ 2. Taking also the case m = 1 into account, it can be

readily seen that we can find a suitable constant d such that the right-hand-side in

turn is bounded above by n · dm·(1+log n
m ), as desired.

It turns out that a slight alteration of this proof gives a corresponding upper

bound for the interleaving of two regular languages:

Theorem 21. There exists a constant d such that for all m ≤ n, and for arbitrary

alphabets, alph(x,m, n) ≤ n · dm·(1+log n
m ) holds.

Proof. As for the intersection operation, assume we are given two regular expres-

sions r1 and r2 of size m and n, respectively. We apply a simple trick found in the

textbook [33] to simulate, in a sense detailed below, the interleaving operation by

means of the intersection operation.

We will consider first the case where the expressions r1 and r2 are over disjoint

alphabets Σ1 and Σ2. Again, we convert first the two expressions into NFAs A1

and A2 having m + 1 and n + 1 states, respectively, such that both underlying

graphs G1 and G2 have treewidth at most 2. Next, we add transitions ensuring

that A1 can consume symbols from Σ2 without changing its state, and perform a

similar construction for A2. More precisely, for each state p ∈ A1 and each alphabet

symbol a ∈ Σ2, we add transitions p
a→ p, and we perform a symmetric construction

for A2, in that we add for each state q ∈ A2 and each alphabet symbol b in Σ1 a

transition q
b→ q. Let the A′

1 and A′
2 denote the respective NFAs resulting from
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this construction. It is not difficult to prove that L(A′
1)∩L(A′

2) = L(A1) x L(A2),

compare [33].

Notice that going, for i = 1, 2, from Ai to A′
i is mirrored in the underlying graphs

in the mere addition of a self-loop to each vertex. Exactly this technicality was dealt

with already in the proof of Theorem 20 for the intersection of NFAs, and thus the

analysis carried out in that proof applies mutatis mutandis to the alphabetic width

of the interleaving of two regular expressions that are over disjoint alphabets.

Finally, the case Σ1 ∩Σ2 6= ∅ can be easily reduced to the case of disjoint alpha-

bets: we rename the second alphabet Σ2 = {a1, a2, . . . , aℓ} into Σ′
2 = {a′1, a′2, . . . , a′ℓ}

and apply the construction outlined above. Then, in the resulting expression for

the interleaved language, we change each occurrence of an alphabet symbol from

Σ′
2 back into an occurrence of the corresponding symbol from Σ2. The final result

describes the language L(r1) x L(r2), as desired.

Observe that for the parameter range where m = Θ(n), each of the two upper

bounds asymptotically matches the corresponding lower bound stated in Theo-

rem 17, that is, alph(∩, n,Θ(n)) = 2Θ(n) and alph(x, n,Θ(n)) = 2Θ(n). Also, the

upper and lower bound are very close in general.
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