
The Size of Higman-Haines Sets ⋆

Hermann Gruber a Markus Holzer b Martin Kutrib c

aInstitut für Informatik, Ludwig-Maximilians-Universität München
Oettingenstraße 67, D-80538 München, Germany

email: gruberh@tcs.ifi.lmu.de
bInstitut für Informatik, Technische Universität München

Boltzmannstraße 3, D-85748 Garching bei München, Germany
email: holzer@in.tum.de

cInstitut für Informatik, Universität Giessen
Arndtstraße 2, D-35392 Giessen, Germany
email: kutrib@informatik.uni-giessen.de

Abstract

We show that for the family of Church-Rosser languages the Higman-Haines sets,
which are the sets of all scattered subwords of a given language and the sets of all
words that contain some word of a given language as a scattered subword, cannot be
effectively constructed, although these both sets are regular for any language. This
nicely contrasts the result on the effectiveness of the Higman-Haines sets for the
family of context-free languages. The non-effectiveness is based on a non-recursive
trade-off result between the language description mechanism of Church-Rosser lan-
guages and the corresponding Higman-Haines sets, which in turn is also valid for all
supersets of the language family under consideration, and in particular for the fam-
ily of recursively enumerable languages. Finally for the family of regular languages
we prove an upper and a matching lower bound on the size of the Higman-Haines
sets in terms of nondeterministic finite automata.

1 Introduction

A not so well known theorem in formal language theory is that of Higman [6,
Theorem 4.4], which reads as follows:

⋆ This is a completely revised and expanded version of a paper presented at the
8th Workshop on Descriptional Complexity of Formal Systems (DCFS) held in Las
Cruces, New Mexico, USA, June 21–23, 2006.

Preprint submitted to Elsevier 16 April 2007

If X is any set of words formed from a finite alphabet, it is possible to find
a finite subset X0 of X such that, given a word w in X, it is possible to
find w0 in X0 such that the letters of w0 occur in w in their right order,
though not necessarily consecutively.

In fact, this statement is a corollary to a more general theorem on well-
partially-ordered sets. Here a partially ordered set is called well-partially-
ordered, if every non-empty subset has at least one, but no more than a
finite number of minimal elements (finite basis property). For instance, the
set A∗, where A is a finite alphabet, under the scattered subword relation ≤,
i.e., v ≤ w if and only if v = v1 . . . vk and w = w1v1 . . . wkvkwk+1, for some
integer k, where vi and wj are in A∗, for 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1, is a
well-partially-ordered set. Interestingly, the concept of well-partially-orders
has been frequently rediscovered, for example, see [5,6,9,15,16]. Moreover,
although Higman’s result appears to be only of theoretical interest, it has
some nice applications in formal language theory. It seems that one of the
first applications has been given by Haines in [5, Theorem 3], where it is
shown that the set of all scattered subwords, i.e., the Higman-Haines set
Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }, and the set of
all words that contain some word of a given language, i.e., the Higman-Haines
set Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }, are both reg-
ular for any language L ⊆ A∗. As pointed out in [5] this is an exceptional
property, which is quite unexpected. It is worth mentioning that the regular
languages Down(L) and Up(L) cannot be obtained constructively in gen-
eral (in terms of finite automata). This is definite, because L is empty if and
only if Down(L) and Up(L) are empty, but the question of whether or not
a language is empty is undecidable for recursively enumerable languages and
decidable for regular ones. A direct application to formal language theory, to
be more precise, to parallel rewriting, has been given in [15], where based
on the regularity of the aforementioned set a large class of ET0L-grammars
is identified, which can generate regular languages only. Yet another applica-
tion of Higman’s theorem was used to obtain a shrinking lemma for indexed
languages [4] and recently a characterization of the recursively enumerable
languages in terms of context-free programmed grammars with unconditional
transfer working under leftmost derivations of a certain type [3] was given. For
some generalizations on Higman’s result in formal language theory we refer
to [8].

Although the basic results for Higman-Haines sets date back to the 1950s
and 1960s, surprisingly less is known with respect to the (descriptional) size
of these sets. To our knowledge the only paper dealing with effective con-
structibility issues is [16], where an open problem raised in [5] has been solved,
i.e., Down(L) can effectively be constructed for a given context-free gram-
mar G with L = L(G). In fact, the presented result is slightly more general
than stated here. Moreover, it was also shown that Up(L) can be obtained

2

effectively, if L is a context-free language. This is the starting point of our in-
vestigations, because the effectiveness of the Higman-Haines sets for context-
free languages immediately raises the question whether a similar result holds
for the family of Church-Rosser languages. This language family lies in be-
tween the regular languages and the growing context-sensitive languages, but
is incomparable to the family of context-free languages [1]. In fact, we show
that for Church-Rosser languages the size of the Higman-Haines sets can-
not be bounded by any recursive function; hence we obtain a non-recursive
trade-off result between the language description mechanism and the corre-
sponding Higman-Haines set. This non-recursive trade-off result implies that
the Higman-Haines sets cannot effectively be constructed for Church-Rosser
languages and all of its supersets. It turns out that the problem to decide
whether a given regular language is the Higman-Haines set Down(L) of a
given recursively enumerable language is closely related to the infiniteness
problem for Turing machine languages. In particular, we determine the exact
level of unsolvability in the arithmetic hierarchy for the problem in question,
and show that it is Π2-complete. In case of the Higman-Haines set Up(L) a
similar result is obtained, namely ∆2-completeness. For the size of the Higman-
Haines set generated by regular languages matching upper and lower bounds
are presented. That is, we prove that a linear blow-up is sufficient and neces-
sary in the worst case for a nondeterministic finite automaton to accept the
Higman-Haines set Down(L) or Up(L) generated by some language that is
represented by another nondeterministic finite automaton.

The paper is organized as follows. The next section contains preliminaries
and basics on Higman-Haines sets. Then Section 3 deals with decidability
questions connected to the trade-offs in size between recursively enumerable,
context-sensitive, growing context-sensitive, and Church-Rosser languages and
Higman-Haines sets. After that, the upper and matching lower bound on the
size of the Higman-Haines set for regular languages in terms of nondetermi-
nistic finite automata size is shown. Finally we summarize our results and
conclude with some open problems.

2 Preliminaries

We denote the set of non-negative integers by N. The powerset of a set S is
denoted by 2S. For an alphabet A, let A+ be the set of non-empty words w
over A. If the empty word λ is included, then we use the notation A∗. For the
length of w we write |w|. Set inclusion and strict set inclusion are denoted
by ⊆ and ⊂, respectively.

Let v, w ∈ A∗ be words over alphabet A. We define v ≤ w if and only if there
are words v1, v2, . . . , vk and w1, w2, . . . , wk+1, for some k ≥ 1, vi ∈ A∗, wi ∈ A∗,

3

such that v = v1v2 . . . vk and w = w1v1w2, v2 . . . wkvkwk+1. In case v ≤ w we
say that v is a scattered subword of w. Let L be a language over alphabet A.
Then

Down(L) = { v ∈ A∗ | there exists w ∈ L such that v ≤ w }

and
Up(L) = { v ∈ A∗ | there exists w ∈ L such that w ≤ v }

are the Higman-Haines sets generated by L.

Example 1 Let A = {0, 1}. If v = 10011, then

λ, 0, 1, 00, 01, 10, 11, 001, 011, 100, 101, 111, 0011, 1001, 1011, 10011

are all of its scattered subwords. Moreover, the words

10011, 010011, 100011, 100101, 100110, 100111, 101011, 110011, . . .

contain v as a scattered subword. Next consider the linear context-free language
L = { 10n1n | n ≥ 1 } over the alphabet A. Then the Higman-Haines sets
generated by L are

Down(L) = (λ + 1)0∗1∗ and Up(L) = (0 + 1)∗1(0 + 1)∗0(0 + 1)∗1(0 + 1)∗.

Finally, let L′ be the regular language (01)∗10 over the alphabet A. A minimal
nondeterministic finite automaton accepting L′ is depicted in Figure 1. Then

1

2

3 4

01

1 0

Fig. 1. A minimal NFA of size eight accepting the language L′.

Down(L′) = (0 + 1)∗, because for every word w we have w ≤ (01)|w|10 and
the latter word belongs to L′. Finally, Up(L′) = (0 + 1)∗1(0 + 1)∗0(0 + 1)∗,
which equals 0∗1+0(0 + 1)∗, since 10 ≤ w for every w ∈ L′ and the word 10 is
the minimal element of the scattered subword relation w.r.t. the language L′.

The next theorem is the surprising result of Haines. It has been shown about
half a century ago. Actually, it is a corollary of Higman’s work, but let us state
it as a theorem.

Theorem 2 ([5,6]) Let L be an arbitrary language. Then both Down(L) and
Up(L) are regular.

4

In fact, Higman’s result as stated in the introduction rephrased in the notation
introduced above reads as follows:

Lemma 3 ([6]) Let L be an arbitrary language. Then there exists a natural
number n, which depends only on L, such that Up(L) =

⋃
1≤i≤n Up({wi}) for

some words wi ∈ L with 1 ≤ i ≤ n.

The statement of this lemma is sometimes called the finite basis property. The
basis of a language w.r.t. the scattered subword relation is defined as follows:
A word w ∈ L is called minimal in L if and only if there is no v ∈ L with
v ≤ w and v 6= w. The set of minimal elements in L is called a basis of the
language L. Observe that any shortest word in L is minimal in L, and any
such word must therefore be part of the basis.

It is worth mentioning that the Higman-Haines sets are closely related to the
Straubing-Thérien hierarchy—see, e.g., [13]. In order to simplify our presen-
tation we introduce the notation of the shuffle of two languages. Let x and y
be two words over A. The shuffle of x and y, denoted by x X y, is the set

{ x1y1x2y2 . . . xnyn | there is a n ≥ 1 such that x = x1x2 . . . xn,

y = y1y2 . . . yn with xi, yi ∈ A∗, for 1 ≤ i ≤ n }.

The shuffle of two languages L1, L2 ⊆ A∗ is

L1 X L2 = {w ∈ A∗ | w ∈ x X y for some x ∈ L1 and y ∈ L2 }.

Then every set L over alphabet A is a shuffle ideal, i.e., L = L X A∗ and
vice versa. Moreover, L ⊆ A∗ is a shuffle co-ideal if L is the complement of a
shuffle ideal w.r.t. A∗. Note that Haines [5, Theorem 2b] has shown that every
down-set is the complement of an up-set and vice versa. Since a language is of
level 1/2 of the Straubing-Thérien hierarchy if and only if it is a shuffle ideal,
the level 1/2 coincides with the family of languages of all up-sets {Up(L) | L ⊆
A∗ }. On the other hand, the family of all down-sets {Down(L) | L ⊆ A∗ }
equals the complements of the languages at level 1/2. Hence from the algebraic
point of view, all these languages are quite simple in nature.

The following lemma summarizes an easy observation about the relation of L
and its Higman-Haines sets.

Lemma 4 Let L ⊆ A∗ be an arbitrary language. (1) Then L is empty if and
only if both Down(L) and Up(L) are empty. (2) Moreover, language L is
finite if and only if the set Down(L) is finite. (3) Finally, λ ∈ L if and only
if Up(L) is universal, i.e., Up(L) = A∗.

Let D be a family of automata or grammars, satisfying that it is decidable
whether a given string is a descriptor belonging to D or not. The formal lan-

5

guage represented by M ∈ D is denoted by L(M) and the family of languages
represented by D is L (D) = {L(M) | M ∈ D }.

In order to talk about the economy of descriptions we first have to define what
is meant by the size of automata and grammars. In general, we are interested
to measure the length of the string that defines an automaton or grammar. In
particular, we sometimes use more convenient and common size measures, if
there is a recursive upper bound for the length of the defining string dependent
on the chosen size measure. For example, for context-sensitive and context-
free grammars M , the size |M | equals the total number of occurrences of
terminal and non-terminal symbols in the productions. For deterministic and
nondeterministic finite automata M , the size |M | equals the product of the
number of states and the number of input symbols. Clearly, the considered size
measures imply total, recursive functions c : D → N, such that D is recursively
enumerable in order of increasing size, and does not contain infinitely many
members of the same size.

3 Undecidability of Sufficient Sizes for Higman-Haines Sets

In this section we consider the size of finite automata (FA) sufficient to accept
the Higman-Haines set generated by some language given by an automaton or
grammar. The first family in question are recursively enumerable languages
given by Turing machines or, equivalently, by phrase-structure grammars. The
question for the sufficient size of an FA is closely related to decidability prob-
lems. For example, if it would be decidable whether a given FA accepts the
Higman-Haines set of a given language L, then the sufficient size would be
computable. The computation could simply enumerate all FAs in increasing
order, and decide for every automaton whether it accepts Down(L). Clearly,
the size of the first matching automaton is a sufficient one. The assertion
remains true even if the problem is semi-decidable only. Moreover, it is evi-
dent that one cannot effectively construct the Higman-Haines set generated
by some Turing machine language L. If it were effectively constructible, one
could decide the emptiness of Turing machine languages, since the Higman-
Haines set Down(L) is empty if and only if L is empty. A similar statement
is valid for the Higman-Haines set Up(L).

In order to deal with these questions, we recall some notations on computabil-
ity theory [14]. A problem (or language) is called decidable, if there is a Turing
machine that will halt on all inputs and, given an encoding of any instance of
the question, will return the answer “yes” or “no” for the instance. The prob-
lem is semi-decidable or recursively enumerable, if the Turing machine halts
on all instances for which the answer is “yes.” For example, the equivalence
of two context-free languages given by context-free grammars is undecidable.

6

But it is easy to see that the non-equivalence problem is semi-decidable.

As aforementioned, it is undecidable whether a given FA accepts the Higman-
Haines set of a given language. So, we are interested to explore how hard the
problem is. Is it semi-decidable or is it on a higher level of unsolvability? To
this end, we consider the arithmetic hierarchy, which is defined as follows:

Σ1 = {L | L is recursively enumerable },

Σn+1 = {L | L is recursive enumerable in some A ∈ Σn },

for n ≥ 1. Here, a language L is said to be recursively enumerable in some B
if there is a Turing machine with oracle B that semi-decides L. Let Πn be the
complement of Σn, i.e., Πn = {L | L is in Σn }. Moreover, let ∆n = Σn∩Πn, for
n ≥ 1. Observe that ∆1 = Σ1∩Π1 is the class of all recursive sets. Completeness
and hardness are always meant with respect to many-one reducibilities, if not
otherwise stated.

A more revealing characterization of the arithmetic hierarchy can be given in
terms of alternation of quantifiers. More precisely, a language L is in Σn, for
n ≥ 1, if and only if there exists a decidable (n+1)-ary predicate R such that

L = {w | ∃y1 ∀y2 ∃y3 . . . Q yn : R(w, y1, y2, . . . , yn) },

where Q equals ∃ if n is odd, and Q equals ∀ if n is even. The characterization
for languages in Πn, for n ≥ 1 is similar, by starting with a universal quantifi-
cation and ending with an ∀ quantifier, if n is odd, and an ∃ quantifier, if n is
even.

A well-known Σ2-complete (Π2-complete) problem, which we will refer to, is
the finiteness (infiniteness) problem for Turing machines [14]. In fact, both
problems are related to the down-set of a language, while it will turn out, that
the up-set problem is slightly easier, namely related to ∆2. The next lemma
gives an upper bound of unsolvability for the Higman-Haines sets.

Lemma 5 Given a Turing machine M and an FA M ′, the problem whether
automaton M ′ accepts Down(L(M)) (Up(L(M)), respectively) is contained
in Π2 (∆2, respectively).

PROOF. First we consider the down-set problem: The Π2 containment fol-
lows by the characterization of the arithmetic hierarchy in terms of alternation
of quantifiers. The problem is equivalent to the statement: For all words v,
there exists w and t, where w is a word and t ≥ 0 a time step, such that

v ∈ L(M ′) ⇐⇒ v ≤ w and M accepts w in less than t time steps.

7

Observe that t is needed in order to obtain a decidable predicate.

For the up-set problem we argue as follows: Recall ∆2 = Σ2 ∩ Π2. For the
containment in Π2 we similarly argue as in the proof above. The details are
left to the reader. Thus, it remains to show Σ2 containment. By Lemma 3
the problem under consideration is equivalent to the statement: There exists
a natural number n, words w1, w2, . . . , wn, and a time step t ≥ 0, such that
for all words w and time steps t′ ≥ 0 we have

(1) that each word wi is accepted by M in less than t steps,
(2) L(M ′) =

⋃
1≤i≤n Up({wi}), and

(3) word w is not accepted by M in less than t′ steps or w belongs to L(M ′).

Conditions (1) and (2) imply that L(M ′) ⊆ Up(L(M)). Observe that con-
dition (3) ensures that Up(L(M)) ⊆ L(M ′). Namely, for every w we have
w ∈ L(M) ∪ L(M ′) if and only if w 6∈ L(M) ∩ L(M ′). Hence if condition (3)
is satisfied, then L(M) ∩ L(M ′) = ∅, which is equivalent to L(M) ⊆ L(M ′),
and in turn implies Up(L(M)) ⊆ L(M ′), because the up-operation is idem-
potent. Therefore, L(M ′) = Up(L(M)). All the constructions where finite
automata are involved are effectively computable. Hence the above predicate
is decidable, and thus, the assertion follows. 2

Since Π2 contains the complements of the Σ2 languages, and hence ∆2 is closed
under complement, we obtain immediately:

Corollary 6 Given a Turing machine M and an FA M ′, the problem whether
automaton M ′ does not accept Down(L(M)) (Up(L(M)), respectively) is con-
tained in Σ2 (∆2, respectively).

The next goal is to prove lower bounds on the level of unsolvability, i.e., to
prove completeness of the problems. First we turn our attention to the down-
set problem. We show a more general result that reduces infiniteness problems
of language families to the problem in question. The next theorem follows
by part (2) of Lemma 4 and the fact that finiteness is decidable for regular
languages. Nevertheless we give an alternative proof, which construction is
interesting in its own.

Theorem 7 Let D be a family of automata or grammars. Given M ∈ D and
an FA M ′, the problem whether M ′ accepts Down(L(M)) is at least as hard
as the problem whether M accepts an infinite language.

PROOF. In order to solve the infiniteness problem, we start to construct a
Turing machine U on unary inputs as follows. The machine expects inputs

8

which are unary encodings of inputs for M . If the input is not a valid encod-
ing, machine U loops forever. Otherwise it decodes the input and starts to
simulate M . So, U accepts infinitely many inputs if and only if M does. Next
we construct a unary FA M ′ that accepts all inputs. In order to complete the
proof we conclude as follows: If M ′ accepts Down(L(U)), then Down(L(U))
and, therefore, languages L(U) and L(M) are infinite. If conversely L(M) is
infinite, then L(U) is infinite. Since L(U) is a unary language, we conclude in
this case that Down(L(U)) contains all words over the unary alphabet. This
implies that M ′ accepts Down(L(U)). 2

Now we immediately obtain the following completeness result for the down-set
problem.

Theorem 8 Given a Turing machine or a context-sensitive grammar M and
a nondeterministic finite automaton M ′, the problem whether M ′ accepts (does
not accept, respectively) Down(L(M)) is Π2-complete (Σ2-complete, respec-
tively).

PROOF. It is well known that the finiteness (infiniteness, respectively) prob-
lem for recursively enumerable as well as for context-sensitive languages is
Σ2-complete (Π2-complete, respectively). 2

Now let us come to the up-set problem. In [16] it was shown that the ef-
fectiveness to determine the up-set of a language from a family of automata
or languages D is closely related to the emptiness problem of L (D). To be
more precise: Assume D is effectively closed under intersection with regular
languages. Then one can effectively determine Up(L(M)), for every M ∈ D,
if and only if the emptiness problem for L (D) is decidable. The theorem to
come shows that the lower bound of unsolvability is given by the emptiness
problem for the language family under consideration. Since the proof is quite
similar to that of Theorem 7, the details are left to the reader.

Theorem 9 Let D be a family of automata or grammars. Given M ∈ D and
an FA M ′, the problem whether M ′ accepts Up(L(M)) is at least as hard as
the problem whether M accepts the empty set. 2

Since the emptiness problem for Turing machines is Π1-complete, the previous
theorem does not suffice to prove ∆2-completeness of the up-set problem.
Nevertheless, one can show the following hardness results.

Theorem 10 Given a Turing machine M and an FA M ′, the problem whether
automaton M ′ accepts Up(L(M)) is Σ1- and Π1-hard.

9

PROOF. We reduce the halting problem for Turing machines on some in-
put w, i.e., K0 = { 〈M, w〉 | M accepts w } to the problem under consid-
eration. On input 〈M, w〉 we construct the Turing machine Mw such that
L(Mw) = L(M) ∩ {w} and the FA M ′ with L(M ′) = Up({w}). Then it is
easy to see that 〈M, w〉 ∈ K0 if and only if M ′ accepts Up(L(Mw)). Thus, the
problem is Σ1-hard. For the Π1-hardness we adapt the construction, chang-
ing automaton M ′ to accept the empty set. Then the Π1-hardness easily fol-
lows. 2

If we use a more powerful reduction, namely Turing reducibility, then with a
similar proof as above, one can reduce the ∆2-complete problem K = { 〈M〉 |
M accepts the word 〈M〉 } to the up-set problem. The completeness result
reads as follows:

Corollary 11 Given a Turing machine M and an FA M ′, the problem whether
automaton M ′ accepts Up(L(M)) is ∆2-complete under Turing reductions. 2

For the family of context-sensitive languages we obtain the following com-
pleteness result:

Theorem 12 Given a context-sensitive grammar M and an FA M ′, the prob-
lem whether automaton M ′ accepts Up(L(M)) is Π1-complete.

PROOF. The Π1 lower bound follows from Theorem 9. The containment
within Π1 is immediate, because for a given context-sensitive grammar M one
can effectively construct a context-sensitive grammar accepting Up(L(M)),
and then check equivalence of this grammar and the FA M ′. Since the latter
problem belongs to Π1 for languages families with a decidable membership
problem, the claim follows. 2

So far, we presented results concerning the completeness of decidability prob-
lems related to the sizes of Higman-Haines sets. One of the problems first
investigated in connection with Higman-Haines sets was the question whether
a regular representation of Higman-Haines sets can effectively be constructed
from a given language, i.e., given an automaton or grammar M , can the FA
that accepts Down(L(M)) or Up(L(M)) effectively be constructed. Clearly,
the answer depends on the underlying family of automata or grammars from
which we may choose M . As mentioned before, for recursively enumerable
languages the Higman-Haines sets are not effectively constructible. On the
other hand, in [16] the surprising result that the sets are constructible for
context-free languages has been shown. The result is interesting, in particular
since, for example, regularity is not decidable for context-free languages. This
raises immediately the question for Church-Rosser languages, since they are

10

incomparable (with respect to set inclusion) with context-free languages [1],
but a proper superset of regular and a proper subset of growing context-
sensitive languages. In the following we derive answers from relations between
constructibility and decidability. In particular, given an automaton or gram-
mar M , we are interested in the function f : N → N, such that size f(|M |)
is sufficient for an FA to accept Down(L(M)) or Up(L(M)), respectively. It
turns out that for certain devices f exceeds any recursive function. We start
with a simple but fruitful lemma.

Lemma 13 Let D be a family of automata or grammars. If for all M ∈ D an
FA accepting Down(L(M)) can effectively be constructed, then there exists a
recursive function f : N → N such that size f(|M |) is sufficient for an FA to
accept Down(L(M)). A similar statement is valid for Up(L(M).

PROOF. We only prove the statement for the down-set problem. Similar
arguments apply for the up-set problem. Function f is computed as follows.
Given some n ≥ 1, all finitely many M ′ ∈ D are enumerated whose size is
at most n. Next a finite list is computed which contains for each M ′ an FA
accepting Down(L(M ′)). We define f(n) to be the maximal size of the FAs
appearing in the list. Clearly, function f is recursive and, since any n-size
automaton (grammar) M ∈ D appears in the list, size f(|M |) is sufficient for
an FA to accept Down(L(M)). 2

The next results reveal once more the relations between infiniteness or empti-
ness and decidability of the Higman-Haines sets.

Theorem 14 Let D be a family of automata or grammars.

(1) If there exists a recursive function f : N → N such that, for all M ∈ D,
size f(|M |) is sufficient for an FA to accept Down(L(M)), then infinite-
ness is semi-decidable for D.

(2) Let D have a decidable membership problem. If there exists a recursive
function f : N → N such that, for all M ∈ D, size f(|M |) is sufficient
for an FA to accept Up(L(M)), then emptiness is decidable for D.

PROOF. Given some M ∈ D, first we compute the value n = f(|M |) in
order to obtain an upper bound for the size of an FA accepting Down(L(M))
or Up(L(M)). Next a list of all finitely many FAs whose size is at most n is
created. Then we proceed as follows, according to whether we are interested
in the down-set or up-set problem:

(1) For the down-set problem we argue in the following way. Since finiteness
is decidable for regular languages, the list can be modified such that all

11

FAs accepting infinite languages are deleted. From the finite number of
remaining FAs that accept finite languages, respectively, the longest ac-
cepted word, say w, is determined. The language L(M) is infinite if and
only if Down(L(M)) is infinite. So, it suffices to semi-decide infinite-
ness of the language Down(L(M)). Due to the property of f , language
Down(L(M)) is finite if and only if it is accepted by some FA M ′ in
the list. Therefore, it is infinite if and only if it contains a word which
is longer than w. Finally, M is simulated on all inputs longer than w by
dove-tailing. If L(M) is infinite, one of the simulations will accept which
semi-decides infiniteness.

(2) In case of the up-set problem the list of FAs is modified such that all
FAs accepting the empty language are deleted. From the finite number
of remaining FAs that accept non-empty languages, respectively, for each
automaton the shortest accepted word, say w, is determined. The lan-
guage L(M) is empty if and only if Up(L(M)) is empty. Recall that D
has a decidable membership problem. Then verify whether at least one
of these shortest words is accepted by M—this task is decidable by our
assumption. If so, the language L(M) is non-empty, otherwise L(M) is
empty. Hence emptiness is decidable. 2

The next theorem is the main result of this section.

Theorem 15 Let D be a family of automata or grammars which represents
the recursively enumerable, recursive, context-sensitive, growing context-sensi-
tive, or Church-Rosser languages. Then there does not exist a recursive func-
tion f : N → N such that, for all M ∈ D, size f(|M |) is sufficient for an FA
to accept Down(L(M)) or Up(L(M)).

PROOF. In [12] it has been shown that the Church-Rosser languages are
characterized by so-called deterministic shrinking two-pushdown automata,
where the nondeterministic variants are known to characterize the growing
context-sensitive languages, which in turn are a proper subfamily of the de-
terministic context-sensitive languages [1]. Therefore, by Theorem 14 it suffices
to show that infiniteness is not semi-decidable for Church-Rosser languages.
We proceed similarly as in [7], where the proof utilizes results from [10,11].

In contrast to the assertion, assume that the infiniteness is semi-decidable.
Then let U be an arbitrary Turing machine and w some input. In [11] it has
been shown that for U and w one can effectively construct a Church-Rosser
system T (or equivalently a deterministic shrinking two-pushdown automaton)
and a word v, which is irreducible modulo T , such that U halts on input w
if and only if [v]T is finite, where [v]T denotes the congruence class of v mod-
ulo T . Therefore, due to the assumption, it is semi-decidable whether a Turing

12

machine U does not halt on a particular input, by verifying the infiniteness of
a certain congruence class. This is a contradiction, since this would imply the
decidability of the halting problem for Turing machines.

Second, for the language families under consideration with a decidable mem-
bership problem assume that a recursive trade-off between M ∈ D and the FAs
accepting Up(L(M)) exists. Then by Theorem 14 it follows that the empti-
ness problem for all these language families is decidable, a contradiction. If for
the remaining family of recursively enumerable languages a recursive trade-off
exists, then this bound also applies to one of the language families with a
decidable word problem, a contradiction. 2

Unfortunately, the converse of Lemma 13 is an open question. For example,
if there is a recursive upper bound f(|M |) for the size of an FA accepting the
Higman-Haines set of some automaton M , then one can enumerate all finitely
many FAs whose size is at most f(|M |). Moreover, it is quite clear that one
of these FAs is the one we are looking for. But the problem is to identify it.
A rough idea could be to exclude all wrong automata from the list until the
correct one remains. It is easy to exclude an FA that does not accept some
word of the Higman-Haines set. But how to exclude FAs that accept a superset
of the Higman-Haines set?

Nevertheless, Lemma 13 gives answers to our problem, since together with
Theorem 14 effective constructibility implies the semi-decidability of infinite-
ness. We obtain the next theorem.

Theorem 16 Let D be a family of automata or grammars which represents
the recursively enumerable, recursive, context-sensitive, growing context-sensi-
tive, or Church-Rosser languages. Then given M ∈ D there is no effective
procedure to construct an FA that accepts Down(L(M)) or Up(L(M)). 2

4 Effective Higman-Haines Set Sizes

In this section we turn to the family of regular languages whose Higman-Haines
sets can effectively be constructed. We are interested in the constructions
themselves, as well as in the sizes of the Higman-Haines sets. Recall that we use
the product of the number of states and the number of input symbols as size
measure for nondeterministic finite automata (NFA). Let M = (S, A, δ, s0, F)
be an NFA, where S is the finite set of internal states, A is the finite set of input
symbols, s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, and δ :
S× (A∪{λ}) → 2S is the partial transition function. An NFA is deterministic
(DFA) if and only if |δ(s, a)| ≤ 1 and |δ(s, a)| = 1 ⇐⇒ |δ(s, λ)| = 0, for all

13

s ∈ S and a ∈ A.

Without loss of generality, we assume that the NFAs are always reduced. This
means that there are no unreachable states and that from any state an ac-
cepting state can be reached.

In order to construct an NFA accepting Down(L(M)), at first the transition
function δ of M is replaced by δ1, where δ1 provides all transitions of δ and,
in addition, λ-transitions whenever δ provides a non-λ-transition, i.e.,

∀ s ∈ S, a ∈ A : δ1(s, a) = δ(s, a)

and
∀ s ∈ S : δ1(s, λ) = δ(s, λ) ∪

⋃

a∈A

δ(s, a).

So, given an input v from Down(L(M)) such that v ≤ w and w ∈ L(M), the
new NFA simulates M on w in such a way that it guesses the missing input
symbols and performs the corresponding transitions of M as λ-transitions.
Moreover, since the NFA is still reduced, there is an accepting λ-path from
every state. Therefore, we can define any state to be an accepting state. More-
over, we safely may delete all λ-loops, i.e., all λ-transitions from a state to
itself. It is easy to see that the new NFA accepts Down(L(M)).

Now we construct an NFA accepting Up(L(M)). The transition function δ
of M is replaced by δ1, where δ1 provides all transitions of δ and, in addition,
loops of all input symbols on all states, i.e.,

∀ s ∈ S, a ∈ A : δ1(s, a) = δ(s, a) ∪ {s}

and
∀ s ∈ S : δ1(s, λ) = δ(s, λ).

On input v from Up(L(M)) such that w ≤ v and w ∈ L(M), the new NFA
simulates M on input w in such a way that it over-reads additional symbols
and performs the introduced loop-transitions. Taking the original states as
accepting, it is easy to see that the new NFA accepts Up(L(M)).

Example 17 Reconsider the regular language L′ = (01)∗10. An NFA accept-
ing the Higman-Haines set Down(L′) is depicted in Figure 2 (left). By our
previous investigations we know that Down(L′) = (0 + 1)∗; hence the mini-
mal NFA accepting Down(L′) has size two. The NFA accepting the Higman-
Haines set Up(L′) is depicted in Figure 2 (right). We know that Up(L′) =
0∗1+0(0 + 1)∗, and therefore the minimal NFA accepting Up(L′) has size at
most 6. It is not hard to see that in fact any minimal NFA has that size.

14

1

2

3 4

λ, 0λ, 1

λ, 1 λ, 0

1

2

3 4

0, 1

0, 1

0, 1 0, 1
01

1 0

Fig. 2. An NFA (left) of size eight accepting the Higman-Haines set Down(L′) and
an NFA (right) accepting the language Up(L′) also of size eight.

Corollary 18 For any NFA M of size n, one can effectively construct an
NFA accepting Down(L(M)) or Up(L(M)), whose size is at most n. 2

It is not hard to see that the upper bound is tight in both cases. That is, it
is also the lower bound in the worst case. The next lemma summarizes the
results.

Lemma 19 Let M be an NFA of size n. Then size n is necessary and suffi-
cient in the worst case for an NFA M ′ to accept Down(L(M)) or Up(L(M)).
The NFA M ′ can effectively be constructed.

PROOF. We use the finite languages Ln = {an−1} with n ≥ 1 as witnesses.
Clearly, Ln is accepted by some n-state NFA M whose size is |{a}| · n. Since
the longest word in Down(Ln) =

⋃n−1
i=0 {a

i} has length n − 1, any NFA M ′

which accepts Down(Ln) needs at least n states and, thus, has at least size n.
A similar argument applies for the set Up(Ln). 2

5 Conclusions

We have investigated the size of Higman-Haines sets for the language fam-
ilies of recursively enumerable, recursive, context-sensitive, growing context-
sensitive, and Church-Rosser languages. It turned out that in all these cases
the size cannot be bounded by any recursive function. The key to this non-
recursive trade-off result is the relation between infiniteness or emptiness and
decidability of the Higman-Haines sets. For the family of regular languages
we give a precise bound on the size of the NFA accepting the Higman-Haines
sets.

The results of Higman and Haines raises a host of questions which relate
to the special case of the scattered subword relation studied here. Since the
aforementioned result only needs a well-partial-order, one may ask similar

15

questions for other well-partially-ordered sets as, e.g., for the Parikh subword
quasi-order or for monotone well-quasi-orders—see [2,8] for further results on
these well-quasi-orders. Finally, let us mention that another direction of future
research could be to consider linear context-free and context-free languages,
because their Higman-Haines sets can be effectively constructed [16].

References

[1] Gerhard Buntrock and Friedrich Otto. Growing context-sensitive languages and
Church–Rosser languages. Inform. Comput., 141(1):1–36, 1998.

[2] A. Ehrenfeucht, D. Haussler, and G. Rozenberg. On regularity of context-free
languages. Theoret. Comput. Sci., 27:311–332, 1983.

[3] H. Fernau and F. Stephan. Characterizations of recursively enumerable sets by
programmed grammars with unconditional transfer. J. Autom., Lang. Comb.,
4(2):117–152, 1999.

[4] Robert H. Gilman. A shrinking lemma for indexed languages. Theoret. Comput.
Sci., 163:277–281, 1966.

[5] Leonard H. Haines. On free monoids partially ordered by embedding. J. Comb.
Theory, 6:94–98, 1969.

[6] Graham Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., Series 2, 2:326–336, 1952.

[7] Markus Holzer, Martin Kutrib, and Jens Reimann. Descriptional complexity of
deterministic restarting automata. In C. Mereghetti, B. Palano, G. Pighizzini,
and D. Wotschke, editors, Descriptional Complexity of Formal Systems (DCFS
2005), Rapporto Tecnico 06-05, pages 158–169. Università degli Studi di Milano,
2005.

[8] Lucian Ilie. Decision Problems on Orders of Words. Ph.D. thesis, Department
of Mathematics, University of Turku, Finland, 1998.

[9] Joseph B. Kruskal. The theory of well-quasi-ordering: A frequently discovered
concept. J. Comb. Theory, 13:297–305, 1972.

[10] Robert McNaughton, Paliath Narendran, and Friedrich Otto. Church-Rosser
Thue systems and formal languages. J. ACM, 35(2):324–344, 1988.

[11] P. Narendran, C. Ó’Dúnlaing, and H. Rolletschek. Complexity of certain
decision problems about congruential languages. J. Comput. System Sci.,
30(3):343–358, 1985.

[12] G. Niemann and F. Otto. The Church-Rosser languages are the deterministic
variants of the growing context-sensitive languages. Inform. Comput., 197:1–21,
2005.

16

[13] Jean-Eric Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 10, pages 679–746. Springer,
Berlin, 1997.

[14] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

[15] Jan van Leeuwen. A regularity condition for parallel rewriting systems.
SIGACT News, 8(4):24–27, 1976.

[16] Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids.
Discrete Mathematics, 21:237–252, 1978.

17

