
Optimal Lower Bounds on Regular Expression

Size Using Communication Complexity

Hermann Gruber and Jan Johannsen

Institut für Informatik, LMU München
Oettingenstr. 67, 80538 München, Germany

{gruberh,jjohanns}@tcs.ifi.lmu.de

Abstract. The problem of converting deterministic finite automata into
(short) regular expressions is considered. It is known that the required
expression size is 2Θ(n) in the worst case for infinite languages, and for
finite languages it is nΩ(log log n) and nO(log n), if the alphabet size grows
with the number of states n of the given automaton. A new lower bound
method based on communication complexity for regular expression size
is developed to show that the required size is indeed nΘ(log n).

For constant alphabet size the best lower bound known to date is
Ω(n2), even when allowing infinite languages and nondeterministic fi-
nite automata. As the technique developed here works equally well for
deterministic finite automata over binary alphabets, the lower bound is
improved to nΩ(log n).

1 Introduction

One of the most basic theorems in formal language theory is that every finite
automaton can be converted into an equivalent regular expression, and vice
versa [10]. While algorithms accomplishing these tasks have been known for a
long time, there has been a renewed interest in these classical problems during
the last few years. For instance, new algorithms for converting regular expres-
sions into finite automata outperforming classical algorithms have been found
only recently, as well as a matching lower bound of Ω(n · (log n)2) on the min-
imum number of transitions required by any equivalent nondeterministic finite
automaton (NFA). The lower bound is, however, only reachable for growing al-
phabets, and a better algorithm is known for constant alphabet size, see [20] for
the current state of the art.

In contrast, much less is known about the converse direction, namely of con-
verting finite automata into regular expressions. Apart from the fundamental na-
ture of the problem, some applications of converting finite automata into regular
expressions lie in control flow normalization, including uses in software engineer-
ing such as automatic translation of legacy code [17]. All known algorithms cov-
ering the general case of infinite languages are based on the classical ones, which
are compared in the survey [18]. The drawback is that all of these (structurally
similar) algorithms return expressions of size 2O(n) in the worst case, and Ehren-
feucht and Zeiger exhibit a family of languages over a growing alphabet for which

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 273–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 H. Gruber and J. Johannsen

this exponential blow-up is inevitable [2]. This leads to the quest for identifying
structural restrictions on the underlying transition graph of the given finite au-
tomaton that can guarantee a shorter equivalent regular expression [3,16], as well
as for heuristics improving the classical algorithms [6,1]. Another possibility is to
concentrate on subfamilies of regular languages. For the important special case
of unary languages, it has been established that every n-state nondeterministic
finite automaton can be converted in polynomial time into an equivalent regular
expression of polynomial size [13]. And for finite languages, there exist equivalent
regular expressions of size at most nO(log n) obtained by a classical construction,
which is carefully analyzed in [3]. In contrast, results from [2] show that size
nΩ(log log n) can be necessary for finite languages—at least for a growing alphabet.

Although there remains a considerable gap between the best known upper
bounds and the lower bounds given some 30 years ago, to the best of our knowl-
edge, only little progress has been made on this problem. The most preeminent
gap between the upper and lower bounds presented in [2] is in the case of finite
languages. There the upper and lower bounds of nO(log n) and nΩ(log log n), re-
spectively, are essentially the best ones known to date. We close this gap, giving
that the blow-up for finite languages is nΘ(log n) in the worst case, when switch-
ing the representation from a finite automaton to a regular expression. To this
end, we develop a new lower bound technique for regular expression size based
on communication complexity. Ellul et al. [3] prove a lower bound of Ω(n2) on
the size of regular expressions for a finite language over the binary alphabet by a
reduction to Boolean circuit complexity. We improve this approach by harnessing
a technique used to obtain better lower bounds for monotone Boolean circuits,
using the communication complexity of search problems as introduced by Karch-
mer and Wigderson [8]. Our approach shows that the lower bound can even be
realized for an n-state deterministic finite automaton over a binary alphabet.

We also show that a family of finite languages (over a growing alphabet)
studied by Ehrenfeucht and Zeiger [2] captures the combinatorial core of the
conversion problem for finite languages, as these form in some precise sense
the hardest languages for this problem. We then use this to obtain a slight
improvement of the best known upper bounds on this conversion problem.

2 Preliminaries

2.1 Formal Languages

We assume the reader to be familiar with the basic notions in formal language
and automata theory as contained in [7]. In particular, let Σ be an alphabet
and Σ∗ the set of all words over the alphabet Σ, including the empty word ε.
The length of a word w is denoted by |w|, where |ε| = 0, and the total number of
occurrences of the alphabet symbol a in w is denoted by |w|a. In this paper we
mainly deal with a special class of finite languages called homogeneous languages.
A finite language L ⊂ Σ∗ is homogeneous if all words in the language have the
same length. In order to fix the notation, we briefly recall the definition of regular
expressions and the languages described by them:

Optimal Lower Bounds on Regular Expression Size 275

Let Σ be an alphabet. The regular expressions over Σ and the languages
that they denote are defined recursively as follows: ∅ is a regular expression and
denotes the empty language; for a ∈ Σ ∪ {ε}, a is a regular expression and
denotes the language {a}; if e and f are regular expressions denoting languages
E and F , then (e + f), (e · f) and (e)∗ are regular expressions denoting the
languages E ∪ F , E · F and E∗, respectively. Finally, the language described by
the regular expression E is denoted by L(E).

For convenience, parentheses are sometimes omitted and the product is sim-
ply written as juxtaposition. The priority of operators is specified in the usual
fashion: product is performed before disjunction, and star before both product
and disjunction. We also write sometimes L1+L2 to denote the union of the lan-
guages L1 and L2. The alphabetic width (or size) alph(E) of a regular expression
E is defined as the total number of occurrences of symbols in Σ in E. For a reg-
ular language L we define alph(L) as the minimum alphabetic width among all
regular expressions describing L. As we will be primarily concerned with small
regular expressions, we recall the notion of uncollapsible regular expressions [3]:

Let E be a regular expression. We say that E is uncollapsible if all of the
following conditions hold: If E contains the symbol ∅, then E = ∅; the expression
E contains no subexpression of the form FG or GF , with L(F) = {ε}; if E
contains a subexpression of the form F + G or G + F with L(F) = {ε}, then
ε /∈ L(G); if E contains a subexpression of the form F ∗, then L(F) �= {ε}.

The reader might have noticed that we have added a fourth condition not
present in the original definition. This condition ensures that the star operator
cannot occur in uncollapsible regular expressions describing finite languages. It is
easily seen that for every collapsible regular expression, there is an uncollapsible
one specifying the same language of at most the same size.

2.2 Communication Complexity

Let X, Y, Z be finite sets and R ⊆ X × Y × Z a ternary relation on them. In
the search problem R, we have Alice given some input x ∈ X , Bob is given
some input y ∈ Y . Initially, no party knows the other’s input, and Alice and
Bob both want to output some z such that (x, y, z) ∈ R, by communicating
as few bits as possible. A communication protocol is a binary tree with each
internal node v labeled either by a function av : X → {0, 1} if Alice transmits
at this node, or bv : Y → {0, 1} if Bob transmits at this node. Each leaf is
labeled by an output z ∈ Z. We say that a protocol solves the search problem
for relation R if for every input pair (x, y) ∈ X × Y , walking down the tree
according to the functions av and bv leads to a leaf labeled with some z satisfying
(x, y, z) ∈ R. The overall number of bits transmitted for a given input pair
(x, y) ∈ X × Y and a given protocol is then equal to the length of the walk
just described; and the maximum length among these walks equals the depth
of the tree. The (deterministic) communication complexity D(R) is now defined
as the minimum depth among all communication protocols solving R, and the
protocol partition number CP (R) denotes the minimum number of leaves among
all protocols solving the search problem for R.

276 H. Gruber and J. Johannsen

Of course, there exist protocols whose depth is even linear in the number of
leaves, but a standard argument about balancing binary trees shows that every
such deep protocol can be transformed into a shallow protocol, see e.g. [11, ch. 2]:

Lemma 1. log CP (R) ≥ 1
3D(R).
�

An important fact about these two complexity measures is a close correspondence
with the complexity of Boolean circuits and Boolean formulas, respectively. This
relation is based on search problems, which we define next in terms of languages.

For a homogeneous language ∅ ⊂ L ⊂ Σn, the search problem associated
with L is a ternary relation RL ⊆ L × (Σn \ L) × [n] defined by: (v, w, i) ∈ RL

iff vi �= wi. Karchmer and Wigderson established the following connection to
circuit complexity [8]: Take Σ = {0, 1}. If we naturally identify each set L ⊆
{0, 1}n with its characteristic n-bit Boolean function, then D(RL) equals the
minimum depth of a Boolean circuit (over the standard basis) computing the
characteristic function of L. Moreover, CP (RL) equals the minimum number of
variable occurrences among all Boolean formulas representing L.

Proving superpolynomial lower bounds on formula size for specific functions
turns out to be an extremely difficult open problem. Fortunately, this is no
longer true if we consider monotone Boolean formulas [8]. A similar class of
search problems can be defined for the latter setup:

Let (Σ, <) = (a1 < a2 < · · · < ak) be an ordered alphabet. This order on Σ
is extended componentwise to a partial order on Σn. The upward closure of a
homogeneous language L ⊆ Σn (w.r.t. this partial order) is defined as the set

↑(L) = {w ∈ Σn | u ≤ w for some u ∈ L}.
A homogeneous language L ⊆ Σn is called monotone, if L = ↑(L). For a mono-
tone homogeneous language ∅ ⊂ L ⊂ Σn, the monotone search problem associ-
ated with L, denoted by Rm

L , is defined by (v, w, i) ∈ Rm
L iff both (v, w, i) ∈ RL

and overmore vi > wi. For Σ = {0, 1} with 0 < 1, the measure CP (Rm
L) equals

the minimum formula size among all monotone Boolean formulas representing L,
and an similar correspondence holds for D(Rm

L) and monotone circuit depth [8].
For more background on communication complexity, the reader might want

to consult the book [11].

3 A New Lower Bound Technique for Regular Expression
Size

The goal of this section is to relate the alphabetic width of a homogeneous
language to the protocol partition number of the monotone search problem as-
sociated with that language.

Definition 2. A regular expression E describing a homogeneous language is
called a homogeneous expression, if none of the symbols ∅, ε and ∗ occur in E,
or L(E) is empty and E = ∅.

Optimal Lower Bounds on Regular Expression Size 277

Lemma 3. For n ≥ 1, let L ⊆ Σn be a homogeneous language. If E is an un-
collapsible regular expression describing L, then E is a homogeneous expression.

Proof. For the case L(E) = ∅, the statement immediately follows from the def-
initions. Assume E is uncollapsible and ∅ ⊂ L(E) ⊆ Σn. We can rule out that
any subexpression F with L(F) = ∅ occurs in E: Every regular expression de-
noting the empty language contains the symbol ∅ at least once. Next, finiteness
of the described languages is invariant under the operations + and ·, but not by
the Kleene star: For any regular expression F , the set denoted by F ∗ is infinite
unless L(F) = ∅ or {ε}. We have already ruled out the existence of ∅ symbols in
E. Since E is uncollapsible, it does not contain any subexpression of the form F ∗

with L(F) = {ε} either. Thus, the language L(E) being finite, E cannot have
any subexpression of the form F ∗.

Finally, we rule out the possibility that ε occurs in E: As all words in L(E) are
of length n, we make the following observation: If E contains a subexpression of
the form F +G, then there exists m ≤ n such that both L(F) and L(G) contain
only strings of length m. If alph(E) ≤ 1, then clearly E has no ε-subexpression.
Assume alph(E) > 1 and ε occurs in E. Since E is uncollapsible, E contains a
subexpression of the form F +ε with ε /∈ F and F �= ∅. But then F +ε describes
a set of strings having different lengths, a property which is inherited to E, since
E has no subexpressions describing the empty language.
�
The next proposition shows that for homogeneous languages, the upward closure
operator ↑ commutes with union and concatenation.

Proposition 4. For homogeneous languages L1 and L2,

↑(L1)+ ↑(L2) = ↑(L1 + L2) and ↑(L1) · ↑(L2) = ↑(L1 ·L2) .
�
We establish next that homogeneous monotone languages can be described by
regular expressions in some normal form, and that the conversion into this nor-
mal form increases the expression size at most by a factor of |Σ|.

A homogeneous expression is called a sum if it uses + as the only operator, i.e.
it is of the form (b1+. . .+bm) for bi ∈ Σ. Let E be a homogeneous expression and
F a subexpression of E. The subexpression F is called a maximal sum in E if F
is a sum, but each subexpression G having F as a proper subexpression is not a
sum. Note that the maximal sums in an expression each describe a subset of Σ.
For a homogeneous expression E, the number of maximal sums in E is denoted by
s(E). Since any non-redundant sum is of size at most |Σ| and contains at least one
alphabetical symbol, we get s(L) ≤ alph(L) ≤ |Σ| · s(L) for every homogeneous
language L. A homogeneous expression E is called monotone if each maximal
sum F in E describes a monotone language, that is L(F) = ↑(L(F)).

Lemma 5. For each homogeneous expression E over an ordered alphabet Σ,
there exists a monotone expression F with s(F) = s(E) and L(F) = ↑(L(E)).
In particular, if E describes a monotone language, then L(F) = L(E).

Proof. The claim is shown by induction on s(E). In the base case s(E) = 1, E
is itself a sum. Let b be the minimal letter occurring in E, and let b1, . . . , bm be

278 H. Gruber and J. Johannsen

those letters in Σ with bi ≥ b. We set F := (b1 + . . . + bm), and we clearly have
L(F) = ↑(L(E)) as well as s(F) = s(E) = 1, hence the claim holds.

Now let s(E) > 1, and thus E = E1 ⊕ E2 where the symbol ⊕ stands for one
of the operators + or ·, and in the latter case, E1 and E2 are not sums. Thus we
have s(E) = s(E1)+ s(E2) and hence s(Ei) < s(E) for i = 1, 2. By the induction
hypothesis, we get expressions Fi with L(Fi) = ↑(L(Ei)) and s(Fi) = s(Ei). We
set F := F1 ⊕ F2, and we obtain s(F) = s(F1) + s(F2) = s(E1) + s(E2) = s(E).
By Proposition 4, we obtain L(F) = ↑(L(E1))⊕↑(L(E2)) = ↑(L(E1)⊕L(E2)) =
↑(L(E)), so the claim holds.
�
Now we are ready to derive a technique for bounding alphabetic width of homo-
geneous languages in terms of communication complexity:

Lemma 6. For every homogeneous language L with ∅ ⊂ L ⊂ Σn and n ≥ 1,

alph(L) ≥ s(L) ≥ CP (RL) .

Moreover, if L is monotone, then

alph(L) ≥ s(L) ≥ CP (Rm
L) .

Proof. Let E be a regular expression with L(E) = L. By Lemma 3, we can
assume that E is homogeneous. If E is a homogeneous regular expression with
L(E) homogeneous, then for every subexpression F of E the language L(F) is
homogeneous as well, and we denote by λ(F) the length of the words in L(F).

We will now, given a homogeneous regular expression E for L, construct a
protocol for RL with s(E) many leaves.

Recall that Alice is given an input x ∈ L, Bob a y /∈ L, and they have to
find an index i with xi �= yi. At each state of the protocol, Alice and Bob keep
a subexpression F of E together with an interval [i, j] of length j − i + 1 =
λ(F), satisfying the invariant that xi . . . xj ∈ L(F) and yi . . . yj /∈ L(F). At the
beginning F = E and [i, j] = [1, n], hence the invariant holds.

At a state of the protocol with a subexpression F = F0 + F1 with s(F) > 1
and interval [i, j], it must hold that either xi . . . xj ∈ L(F0) or xi . . . xj ∈ L(F1),
but yi . . . yj /∈ L(F0) and yi . . . yj /∈ L(F1). Thus Alice can transmit δ ∈ {0, 1}
such that xi . . . xj ∈ L(Fδ), and the protocol continues with F updated to Fδ

and [i, j] unchanged.
At a state with subexpression F = F0 · F1 and interval [i, j], let � := i +

λ(F0) − 1. Then it must hold that xi . . . x� ∈ L(F0) and x�+1 . . . xj ∈ L(F1),
but either yi . . . y� /∈ L(F0) (case 0) or y�+1 . . . yj /∈ L(F1) (case 1). Then Bob
can transmit δ = 0, 1 such that case δ holds, and the protocol continues with F
updated to Fδ and [i, j] set to [i, �] in case 0 and [� + 1, j] in case 1.

At a state with a subexpression F that is a maximal sum in E, it must be the
case that i = j, and that xi ∈ L(F) and yi /∈ L(F), hence in particular xi �= yi

and the protocol can terminate with output i.
Obviously, the protocol solves RL, and the tree of the protocol constructed is

isomorphic to the parse tree of E with its maximal sums at the leaves, thus the
number of leaves is s(E).

Optimal Lower Bounds on Regular Expression Size 279

If L happens to be monotone, then by Lemma 5 we can assume that E is
a monotone expression. Then also all subexpressions of E that appear in the
above proof are monotone, and in the terminating case it must moreover be the
case that xi > yi, therefore the protocol solves Rm

L .
�

4 Lower Bounds for the Conversion Problem

For given integers �, n, we define a family of graphs F�,n with parameters �, n as
the set of directed acyclic graphs whose vertex set V is organized in �+2 layers,
with n vertices in each each layer. Hence we assume V = { 〈i, j〉 | 1 ≤ i ≤ n, 0 ≤
j ≤ �+1}. For all graphs in F�,n, we require in addition that each edge connects
a vertex in some layer i to a vertex in the adjacent layer i + 1.

The following definition serves to represent the set F�,n as a finite set of
strings over the alphabet {0, 1}: Fix a graph G ∈ F�,n for the moment. Let
e(i, j, k) = 1 if G has an edge from vertex i in layer j to vertex k in layer
j + 1, and let e(i, j, k) = 0 otherwise. Next, for vertex i in layer j, the word
f(i, j) = e(i, j, 1)e(i, j, 2) · · · e(i, j, n) encodes the set of outgoing edges for this
vertex. Then for layer j, the word g(j) = f(1, j)f(2, j) · · · f(n, j) encodes the set
of edges connecting vertices in layer j to vertices in layer j + 1, for 0 ≤ j ≤ �.
Finally, the graph G is encoded by the word w(G) = g(0)g(1) · · · g(�). It is easy
to see that each word in the set {0, 1}n2(�+1) can be uniquely decoded as a graph
in the set F�,n.

A graph G ∈ F�,n belongs to the subfamily fork�,n, if there exists a simple
path starting in 〈1, 0〉 ending eventually in a fork, i.e., a vertex of outdegree at
least two. The goal of this section will be to show that the language

L = L�,n = {w ∈ {0, 1}n2(�+1) | w = w(G) with G ∈ fork�,n }
can be accepted by a DFA of size polynomial in both parameters, while this
cannot be the case for any regular expression describing this language.

Proposition 7. For every pair (�, n) with � ≥ 2 and n ≥ 5, the language L�,n

can be accepted by a DFA having at most � · n4 states.

Proof. We describe a DFA A accepting L, which has special states qj
i for 1 ≤

i ≤ n and 0 ≤ j ≤ �+1. These states will have the following property: If G has a
simple non-forking path starting in vertex 〈1, 0〉 and ending in vertex 〈i, j〉, then
the DFA is in state qi,j after reading the first j · n2 letters of the word w(G).
A DFA having this property is obtained by setting q0

1 to be the start state, and
by applying the construction shown in Figure 1 one by one to all states qj

i , for
1 ≤ i ≤ n and 0 ≤ j ≤ �. Each transition in Figure 1 labeled with some regular
expression has to be unrolled to a simple path.

To complete the construction, we have to ensure that from every state q for
which δ(q, 1) is not yet defined, the transition δ(q, 1) leads to a state that leads
every suffix of admissible length to an accepting state. This will be achieved
by adding the transition structure of another deterministic finite automaton

280 H. Gruber and J. Johannsen

qj
i pj

1 rj
1 qj+1

1

(0 + 1)n(i−1)
1 · 0n−1 (0 + 1)n2−ni

pj
2 rj

2 qj+1
2

1 · 0n−2 (0 + 1)n2−ni

pj
n−1 rj

n−1 qj+1
n−1

1 · 0 (0 + 1)n2−ni

pj
n rj

n qj+1
n

1 (0 + 1)n2−ni

...

0

0

0

0

�

0

0 + 1

Fig. 1. Connecting qj
i to the corresponding states in the next layer

that accepts {0, 1}n2(�+1), and routing the lacking transitions into states of this
automaton appropriately, in a way that each time the suffixes of admissible
length are accepted.

Finally, we count the number of states in A: Unrolling the construction de-
picted in Figure 1 introduces

�∑

j=0

n∑

i=1

(
n · i +

n∑

k=1

(n + 1 − k + n2 − n · i)
)

states, excluding the dead state. All dead states can be merged, and the minimal
DFA accepting the language {0, 1}n2(�+1) has n2(� + 1) + 2 states, one of which
is already a dead state. By adding up and simplifying, we see that the number
of states equals

(� + 1)(
1
2
n4 +

1
2
n3 + 2n2) + 2.

Optimal Lower Bounds on Regular Expression Size 281

We have � + 1 <
√

2� and 2/(� + 1) < 1 provided � ≥ 2, and for n ≥ 5 holds
1
2n4 + 1

2n3 + 2n2 + 1 < n4√
2
, and thus we can conclude that the number of states

is bounded above by � · n4, provided � ≥ 2 and n ≥ 5.
�
Next, we give a lower bound on the alphabetic width of this language. To this end,
we show that the communication complexity of the monotone search problem for
L�,n is bounded below by the communication complexity of the relation FORK�,n,
which is defined as follows (cf. [11, ch. 5.3]):

Let W := {1, . . . , n}�. The relation FORK�,n is a subset of W×W×{0, 1, . . . , �}
For two strings x = x1x2 · · ·x� and y = y1y2 · · · y�, and i ∈ {0, 1, . . . , �} we
have (x, y, i) ∈ FORK�,n iff xi = yi and xi+1 �= yi+1, with the convention that
x0 = y0 = 1, x�+1 = n − 1 and y�+1 = n. The following lower bound on this
relation is found in the monograph [11] and is due to1 Grigni and Sipser [4]:

Lemma 8. D(FORK�,n) ≥ �(log n)/4� · �log ��
�
It remains to give a reduction from FORK�,n to the monotone search problem.

Lemma 9. Let L = L�,n. Then D(Rm
L) ≥ � 1

4 log n� · �log ��.
Proof. We show that for L = L�,n, any protocol that solves Rm

L can be used to
solve FORK�,n without any additional communication, which implies the stated
lower bound. The reduction is similar to one used by Grigni and Sipser [4].

From her input x ∈ W , Alice computes a graph Gx ∈ F�,n having for every
0 ≤ i ≤ � an edge from 〈xi, i〉 to 〈xi+1, i+1〉, and an additional edge from 〈x�, �〉
to 〈n, � + 1〉. By construction, Gx ∈ fork�,n and thus w(Gx) ∈ L�,n.

Similarly, from his input y ∈ W , Bob computes a graph Gy having for every
0 ≤ i ≤ � an edge from 〈yi, i〉 to 〈yi+1, i + 1〉. Additionally, Gy has all the edges
from 〈i, j〉 to 〈i′, j + 1〉 where i �= yj and i′ is arbitrary. Therefore Gy /∈ fork�,n

and thus w(Gy) /∈ L�,n.
Now running the protocol for Rm

L on w(Gx) and w(Gy) yields a position k
where w(Gx)k = 1 and w(Gy)k = 0, i.e., an edge that is present in Gx, but not
in Gy. By construction, this edge goes from 〈xi, i〉 to 〈xi+1, i+1〉 for some i, and
it must be that yi = xi and yi+1 �= xi+1, as otherwise the edge would be present
in Gy. Thus i is a solution such that (x, y, i) ∈ FORK�,n.
�
Theorem 10. There exist infinitely many languages Lm such that Lm is ac-
ceptable by a DFA with at most m states, but

alph(Lm) ≥ m
1
75 log m.

Proof. For an integer k, we choose n = 24k, � = n4 and m = n5. Then our
witness language is L = Lm = Ln4,n. This language is acceptable by a DFA with
at most m = n5 states. In contrast, we have D(Rm

L) ≥ (log n)2 by Lemma 9,
which together with Lemma 1 implies that CP (Rm

L) ≥ 2
1
3 (log n)2 = m

1
75 log m,

and the latter is a lower bound for the alphabetic width of the language Lm.
�
1 In fact, Grigni and Sipser investigated a relation that is slightly different from the

one used in [11] and in this work.

282 H. Gruber and J. Johannsen

5 Strength and Limitations

In this section, we illustrate the power and limitations of the techniques we in-
troduced. We show that our lower bound technique sometimes gives tight lower
bounds, although the gap between the lower bound and the actual minimum reg-
ular expression size can be exponential, that is, we cannot hope that CP (RL) has
a performance guarantee for regular expressions similar to the case of Boolean
formulas.

5.1 A Poor Lower Bound

For n even, consider the languages of palindromes of length n, Ln = {wwR |
w ∈ {0, 1}n/2 }. To give an upper bound on CP (RLn), recall from Section 2.2
that this number equals the minimum number of variable occurrences among
all Boolean formulas describing the characteristic function of Ln. The following
formula of size 2n describes the characteristic function:

n/2∧

i=1

(xi ∧ xn/2+i) ∨ (¬xi ∧ ¬xn/2+i).

For a lower bound on alph(L), we use the well known fact that alph(L) is bounded
below by the minimum number of states required by a nondeterministic finite
automaton accepting L. However, it is well known that every nondeterministic
finite automaton accepting Ln has size exponential in n [15].

5.2 Optimal Expressions for Parity

Let parn denote the parity language {w ∈ {0, 1}n ; |w|1 odd }. In [3], it is shown
that alph(parn) = Ω(n2) using Khrapchenko’s bound [9] on the Boolean formula
size of the parity function. From a recent improvement of this bound by Lee [12],
we obtain the following better lower bound:

Theorem 11. If E is a regular expression with L(E) = parn, and n = 2d + k
with k < 2d, then alph(E) ≥ 2d(2d + 3k).

We will now construct regular expressions for parn that exactly match this lower
bound. The construction is essentially the same as Lee’s [12] upper bound for
the size of Boolean formulas for parity, but our analysis is simpler, using only
induction and elementary arithmetic.

We have that parn = L(oddn), where the expressions evenn and oddn are
defined inductively by

even1 := 0 odd1 := 1
even2m := (evenm · evenm) + (oddm · oddm)
odd2m := (evenm · oddm) + (oddm · evenm)

even2m+1 := (evenm+1 · evenm) + (oddm+1 · oddm)
odd2m+1 := (evenm+1 · oddm) + (oddm+1 · evenm)

Optimal Lower Bounds on Regular Expression Size 283

First we observe that alph(evenn) = alph(oddn) for every n, and we denote it
by r(n) := alph(evenn). Then the function r(n) satisfies the following recursive
equations:

r(1) = 1 r(2m) = 4r(m) r(2m + 1) = 2r(m + 1) + 2r(m)

We now show that if n = 2d + k with k < 2d, then r(n) = 2d(2d + 3k), by
induction on n. Thus our expressions match Lee’s lower bound.

The case n = 1 is obvious. For the induction step, we distinguish three cases.
The first case is n = 2m where m = 2d + k, hence n = 2d+1 + 2k. In this case
we have

r(n) = 4r(m) = 4 · 2d(2d + 3k) = 2d+1(2d+1 + 6k).

The second case is n = 2m + 1 where m = 2d + k and m + 1 = 2d + (k + 1) with
k + 1 < 2d, hence n = 2d+1 + 2k + 1 with 2k + 1 < 2d+1. In this case we obtain

r(n) = 2r(m + 1) + 2r(m) = 2d+1(2d + 3k + 3) + 2d+1(2d + 3k)

= 2d+1(2d+1 + 6k + 3) .

The final case is n = 2m+1, where m = 2d+k and m+1 = 2d+1, thus k = 2d−1
and n = 2d+1 + (2d+1 − 1). In this case we calculate

r(n) = 2r(m + 1) + 2r(m) = 22d+3 + 2d+1(2d + 3(2d − 1))

= 2d+1(2d+2 + 2d + 3(2d − 1)) = 2d+1(2d+1 + 2d+1 + 2d + 3(2d − 1))

= 2d+1(2d+1 + 3 · 2d + 3(2d − 1) = 2d+1(2d+1 + 3(2d+1 − 1))

which shows the claim.

6 Upper Bounds for Converting NFAs into Regular
Expressions

In this section, we identify a family of finite languages Hn which are the hardest
finite languages for the NFA to RE conversion problem. The term hardest is
made precise in the statement of the theorem below. The languages Hn were
also studied in [2], where it was shown that alph(Hn) = nΩ(log log n).

Theorem 12. For n ≥ 1, let Gn = (Vn, Δ) be the complete directed acyclic
graph on n vertices, that is Vn = {1, 2, . . . , n} and edge set Δ = {〈i, j〉 | 1 ≤ i <
j ≤ n}. Define the language Hn ⊂ Δ≤n−1 as the set of all paths in G leading
from vertex 1 to vertex n. Then the following holds:

1. Hn can be accepted by an n-state nondeterministic finite automaton.
2. Let Σ be an alphabet. For every finite language L over Σ acceptable by an

n-state nondeterministic finite automaton holds alph(L) ≤ |Σ| · alph(Hn).

284 H. Gruber and J. Johannsen

Proof. The first statement is easy to see. For the second statement, assume the
theorem holds for all values up to n−1, and let A be an n-state nondeterministic
finite automaton accepting L ⊆ Σ≤n−1. Without loss of generality, we assume A
has state set {q1, q2, . . . , qn} and the states are in topological order with respect
to the transition structure of the directed acyclic graph underlying A, that is,
the automaton cannot move from state qj to state qi if i ≤ j. Furthermore, we
can safely assume that the automaton has start state q1 and single accepting
state qn. This can be achieved by the following construction: If q1 is not the
start state, and the state set is topologically ordered, then q1 is not reachable
from the start state. q1 can be removed, and we can apply the theorem for the
obtained n− 1-state automaton. For similar reasons, we can assume that qn is a
final state. If A has another final state p, we add transitions such that for every
transition entering p there is now a transition from the same source entering qn.
Then we remove p from the set of final states. Clearly, the accepted language is
not altered by this construction, and the number of states remains n.

Let H be the minimal partial n-state deterministic finite automaton accepting
Hn, i.e. the automaton has no dead state. We again assume that the state set
of H is topologically ordered, as for A.

Let F and G be the regular expressions obtained by applying the standard state
elimination algorithm [7,14] to the automata H and A, respectively. Since the al-
gorithm is correct, we have L(F) = Hn, and L(G) = L(A). For a pair of states
(qi, qj) with i < j in A, define the regular expression Fij as the minimal expres-
sion describing the union of all transition labels under which the automaton can
change its state from qi to qj . Then by the properties of the transformation algo-
rithm holds G = sub(F), where sub is the substitution replacing every occurrence
of the atomic expression 〈i, j〉 with an occurrence of the expression (Fij).

Now let F ′ be an expression of minimal alphabetic width describing Hn, that
is L(F ′) = L(F). Then this equality is derivable using a sound and complete
proof system for regular expression equations, e.g. see [19]. Then we can derive
the equality L(sub(F ′)) = L(sub(F)) by a single application of the substitution
rule [19], and recall sub(F) = G. To estimate the size of L(G), we simply observe
that alph(Fij) ≤ |Σ|, for all i, j.
�
Thus an algorithm which does the job for the n-state automaton accepting Hn

will not perform much worse given any other finite automaton of equal size.
In doing this, we obtain a slightly improved upper bound for the conversion
problem for all finite languages — the currently best known method [3, Cor. 22]
gives a bound of (n + 1) · kn(n − 1)log n+1:

Corollary 13. Let A be an n-state nondeterministic finite automaton accepting
a finite language L = L(A) over a k-symbol alphabet. Then

alph(L) < k · n(n − 1)log(n−1)+1

Proof. By the preceding theorem, it suffices to give an upper bound on alph(Hn).
The language Hn coincides with set of all walks (of length at most n− 1) in Gn

that start in vertex 1 and end in vertex n. The analysis given in [3, Thm. 20]

Optimal Lower Bounds on Regular Expression Size 285

implies that there exists a regular expression of size at most n(n − 1)log(n−1)+1

describing this set, since for each pair (i, j), there is a regular expression of size
at most 1 describing the set of walks of length at most 1 in Gn starting in i and
end in j. Thus, alph(Hn) ≤ n(n − 1)log(n−1)+1.
�

7 Conclusions and Further Work

We developed a new lower bound technique for regular expression size to show
that converting deterministic finite automata accepting finite languages into reg-
ular expressions leads to an inevitable blow-up in size of nΘ(log n), solving an open
problem stated in [2]. This bound still holds when restricting to alphabet size
two. Note that finite automata accepting unary finite languages can be easily
converted into regular expressions of linear size.

Compared to the finite automaton model, we feel that we have still a lim-
ited understanding of the power of regular expressions in terms of descriptional
complexity. For instance, although we have determined an asymptotically tight
bound of nΘ(log n), there is still a considerable gap between the two constants
implied by the Θ-Notation. This is in stark contrast with the deterministic finite
automaton model, where exact bounds are known for many questions regarding
descriptional complexity, see [21] for an overview.

Another interesting line of research concerns lower bounds for the conversion
problem on infinite languages, over alphabets of constant size. This problem has
been solved in [5], where a corresponding lower bound of 2Ω(n) was established,
given an n-state DFA over a binary alphabet accepting an infinite language.
There a different proof technique based on digraph connectivity was used, which
only gives trivial lower bounds for finite languages. That paper also contains
lower bounds on alphabetic width of some basic regular language operations,
such as intersection, shuffle, and complement. The effect of language operations
on alphabetic width in the case of finite languages is also of interest: For finite
automata accepting finite languages, the descriptional complexity often differs
from the general case, see e.g. [21]. The lower bound techniques developed in
this paper might be useful in that context.

Acknowledgment. We would like to thank Jeffrey Shallit for kindly providing
us a copy of the corrected final version [3], which by now has already appeared.

References

1. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a
given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005)

2. Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. Journal
of Computer and System Sciences 12(2), 134–146 (1976)

3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular Expressions: New Results
and Open Problems. Journal of Automata, Languages and Combinatorics 10(4),
407–437 (2005)

286 H. Gruber and J. Johannsen

4. Grigni, M., Sipser, M.: Monotone separation of logarithmic space from logarithmic
depth. Journal of Computer and System Sciences 50, 433–437 (1995)

5. Gruber, H., Holzer, M.: Finite automata, digraph connectivity and regular expres-
sion size. Technical report, Technische Universität München (December 2007)

6. Han, Y., Wood, D.: Obtaining shorter regular expressions from finite-state au-
tomata. Theoretical Computer Science 370(1–3), 110–120 (2007)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics 3, 255–265 (1990)

9. Khrapchenko, V.M.: Methods for determining lower bounds for the complexity of
π-schemes (English translation). Math. Notes Acad. Sciences USSR 10, 474–479
(1972)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies,
pp. 3–42. Princeton University Press, Princeton (1956)

11. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, New York (1997)

12. Lee, T.: A new rank technique for formula size lower bounds. In: Thomas, W.,
Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007)

13. Martinez, A.: Efficient computation of regular expressions from unary NFAs. In:
Dassow, J., Hoeberechts, M., Jürgensen, H., Wotschke, D. (eds.) Workshop on
Descriptional Complexity of Formal Systems 2002, London, Canada, pp. 216–230
(2002)

14. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRA Transactions on Electronic Computers 9(1), 39–47 (1960)

15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: IEEE Symposium on Switching and Automata Theory 1971,
pp. 188–191 (1971)

16. Morais, J.J., Moreira, N., Reis, R.: Acyclic automata with easy-to-find short reg-
ular expressions. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 349–350. Springer, Heidelberg (2006)

17. Morris, P.H., Gray, R.A., Filman, R.E.: Goto removal based on regular expressions.
Journal of Software Maintenance 9(1), 47–66 (1997)

18. Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré,
J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer,
Heidelberg (2006)

19. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the ACM 13(1), 158–169 (1966)

20. Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer, Hei-
delberg (2006)

21. Yu, S.: State complexity of finite and infinite regular languages. Bulletin of the
EATCS 76, 142–152 (2002)

	Introduction
	Preliminaries
	Formal Languages
	Communication Complexity

	A New Lower Bound Technique for Regular Expression Size
	Lower Bounds for the Conversion Problem
	Strength and Limitations
	A Poor Lower Bound
	Optimal Expressions for Parity

	Upper Bounds for Converting NFAs into Regular Expressions
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

