
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 14:2, 2012, 189–204

Digraph Complexity Measures and
Applications in Formal Language Theory†

Hermann Gruber‡

knowledgepark AG, München, Germany

received 29th January 2012, revised 12th July 2012, accepted 26th October 2012.

We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately
related to a classical topic in formal language theory, namely the star height of regular languages. We explore this
connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other re-
sults, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2.
Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algo-
rithm for this problem. The former algorithm yields an O((logn)3/2)-approximation in polynomial time, whereas
the latter yields the optimum solution, and runs in time and space O∗(1.9129n) on digraphs of maximum outdegree
at most 2.

Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely deter-
mine the computational complexity of the star height problem. Namely, the star height problem for bideterministic
languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results
concerning cycle rank to the bideterministic star height problem. We thus obtain a polynomial-time approximation
algorithm, as well as a reasonably fast exact exponential algorithm for the bideterministic star height problem.

Keywords: regular expression, star height, digraph, cycle rank, ordered coloring, vertex ranking

MSC: 68Q45 (primary), 68Q25, 05C20 (secondary)
ACM CCS: F4.3 Formal Languages, F2.2 Nonnumerical Algorithms and Problems, G2.2 Graph Theory

1 Introduction
In the theory of undirected graphs, structural complexity measures for graphs, such as treewidth and
pathwidth, have gained an important role, both from a structural and an algorithmic viewpoint, see
e.g. [11, 14]. However, networks arising in some domains are more adequately modeled as having di-
rected edges. Therefore in recent years, attempts have been made to lift such measures and parts of the

†An early version of this paper was presented at the 4th Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS 2008), see [17].
‡Email: info@hermann-gruber.com. Part of the work was done while the author was at Institut für Informatik, Justus-

Liebig-Universität Giessen, Germany.

1365–8050 c© 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm14:2ind.html

190 Hermann Gruber

theory of undirected graphs to the case of digraphs. Several recent works show that, while there often exist
partial analogues to the undirected case, the picture for digraphs is much more involved [5, 6, 15, 27, 35].
We discuss some of these measures, relate them to each other, and investigate their algorithmic aspects.
Interestingly, we are able to show that all these complexity measures bound each other within a factor
logarithmic in the order of the digraph, thus paralleling the case of undirected graphs [9]. We focus
in particular on the cycle rank, a digraph complexity measure originally motivated by studies in formal
languages [12]. Apparently, there is a renewed interest in this measure, as witnessed by recent research
efforts [2, 4, 15, 23, 28].

We obtain the following results on computing the cycle rank: The decision version of the problem is
NP-complete, and this remains true for graphs of maximum outdegree at most 2. Previously, the problem
was known to be NP-complete on undirected symmetric digraphs of unbounded degree, see [8]. On the
positive side, we design a polynomial-time O((log n)3/2)-approximation algorithm, as well as an exact
exponential algorithm algorithm computing the cycle rank of digraphs. If the given digraph is of bounded
outdegree, the latter algorithm runs in time and space O∗((2− ε)n), where n is the order of the digraph,
and ε is a constant depending on the maximum outdegree.

For unbounded outdegree, the running time is still O∗(2n), whereas for maximum outdegree 2, we
even attain a bound of O∗(1.9129n). As a further application, we also obtain an exact algorithm for the
directed feedback vertex set problem on digraphs of maximum outdegree 2, which runs within the same
time bound.

Then we present applications to the theory of regular expressions. The star height of a regular language
is defined as the minimum nesting depth of stars needed in order to describe that language by a regular
expression. Already in the 1960s, Eggan [12] raised the question whether the star height can be determined
algorithmically. It was not until 25 years later that Hashiguchi found a rather complicated decidability
proof [20]. Even today, the best known algorithm has doubly exponential running time, and is arguably
still impractical [26]. Therefore, we study the complexity of the star height problem when restricted to a
subclass of the regular languages. We show that the star height problem for bideterministic languages is
NP-complete, and this remains true when restricted to binary alphabets. Furthermore, we present both an
efficient approximation algorithm and an exact exponential algorithm for this problem. The key to these
results are the corresponding algorithms for the cycle rank of digraphs mentioned above; also the above
mentioned bounds carry over to this application in formal language theory.

The paper is organized as follows: After this introduction, we recall in Section 2 some basic notions
from graph theory and from automata theory. We study structural properties of the cycle rank of digraphs
in Section 3. Section 4 is devoted to algorithmic aspects of cycle rank. Afterward, we apply these findings
in Section 5 to the star height problem on bideterministic languages. We complete the paper in Section 6
by showing possible directions for further research.

2 Preliminaries
2.1 Asymptotic Notation
Recall that for two functions f(n) and g(n), we write f(n) = O(g(n)), if there exists a positive constant c
such that for all large enough n holds f(n) < c · g(n). The O∗-notation (also: “soft-O-notation”) is a
similar notation that is often used in exponential algorithmics [14, 38]. In contrast to O-notation, the
latter suppresses not only constant factors, but also larger negligible factors, e.g., polynomial factors

Digraph Complexity Measures and Applications in Formal Language Theory 191

accompanying an exponential. More precisely, for functions f(n) and g(n), we write f(n) = O∗(g(n)) if
f(n) = O

(
g(n) · (log g(n))k

)
for some nonnegative constant k. For example, we have 2n ·n3 = O∗(2n).

2.2 Digraphs
We assume familiarity with basic notions in graph theory, as contained in [11], so we only fix the notation
and give a few specialized definitions below. A digraph G = (V,E) consists of a finite set of vertices V
and a set of edges E ⊆ V 2.

We refer to an edge of the form (v, v) as a loop; A digraph without loops is called loop-free.
The outdegree of a vertex v is defined as the number of vertices u such that (u, v) ∈ E. The total

degree of v is defined as the number of distinct vertices u having (u, v) ∈ E or (v, u) ∈ E.
If the edge relation of a digraph G is symmetric, we say G is an (undirected) graph. By taking the

symmetric closure of the edge relation of a digraph, we obtain its undirected counterpart—of course, this
is a many-to-one correspondence.

For a subset of vertices U ⊆ V , let G[U] denote the sub(di)graph induced by U , which is obtained by
restricting the vertex set of G to U and redefining the edge set E appropriately. In this context, we will
often use G − U as a shorthand for G[V \ U] and G − v for G[V \ {v}]. A subset of vertices U ⊆ V
is strongly connected if for every pair of distinct vertices u and v in U , there is both a path from u to v
and a path from v to u, and both of these paths visit only vertices from U . Maximal strongly connected
subsets of V are called strongly connected components; a strongly connected subset S is nontrivial if the
subdigraph G[S] induced by S contains at least one edge (note that this includes the case S = {v} if v
has a loop). A digraph is acyclic if all of its strongly connected components are trivial.

2.3 Formal Languages
As with digraphs, we only recall some basic notions in formal language and automata theory—for a
thorough treatment, the reader might want to consult a textbook such as [22]. In particular, let Σ be a
finite alphabet and Σ∗ the set of all words over the alphabet Σ, including the empty word λ. The length
of a word w is denoted by |w|, where |λ| = 0. A (formal) language over the alphabet Σ is a subset of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the usual way:(i) ∅, λ, and every
letter a with a ∈ Σ is a regular expression; and when r1 and r2 are regular expressions, then (r1 + r2),
(r1 · r2), and (r1)∗ are also regular expressions. The language defined by a regular expression r, denoted
by L(r), is defined as follows: L(∅) = ∅, L(λ) = {λ}, L(a) = {a}, L(r1 + r2) = L(r1) ∪ L(r2),
L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. For a regular expression r over Σ, the star height,
denoted by h(r), is a structural complexity measure inductively defined by: h(∅) = h(λ) = h(a) = 0,
h(r1 · r2) = h(r1 + r2) = max (h(r1),h(r2)), and h(r∗1) = 1 + h(r1). The star height of a regular
language L, denoted by h(L), is then defined as the minimum star height among all regular expressions
describing L.

It is well known that regular expressions are exactly as powerful as finite automata, i.e., for every reg-
ular expression one can construct an equivalent (deterministic) finite automaton and vice versa, see [22].
Finite automata are defined as follows: A nondeterministic finite automaton (NFA) is a 5-tuple A =
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q × Σ → 2Q is

(i) For convenience, parentheses in regular expressions are sometimes omitted and the concatenation is simply written as juxtapo-
sition. The priority of operators is specified in the usual fashion: concatenation is performed before union, and star before both
product and union.

192 Hermann Gruber

the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting states. The language
accepted by the finite automaton A is defined as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where δ is nat-
urally extended to a function Q × Σ∗ → 2Q. A nondeterministic finite automaton A = (Q,Σ, δ, Q0, F)
is deterministic, for short a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In this case we simply
write δ(q, a) = p instead of δ(q, a) = {p}. Two (deterministic or nondeterministic) finite automata are
equivalent if they accept the same language.

A deterministic finite automaton is bideterministic, if it has a single final state, and if the NFA obtained
by reversing all transitions and exchanging the roles of initial and final state is again deterministic—
notice that, by construction, this NFA in any case accepts the reversed language. A regular language L
is bideterministic if there exists a bideterministic finite automaton accepting L. These languages form a
proper subclass of the regular languages [3].

3 Cycle Rank of Digraphs
3.1 Cycle Rank and Directed Elimination Forests
Originally suggested in the 1960s by Eggan and Büchi in the course of investigating the star height of
regular languages [12], the cycle rank is probably one of the oldest structural complexity measures on
digraphs. In this section, we delve into the structural foundations of cycle rank.

Definition 1 The cycle rank of a directed graph G = (V,E), denoted by r(G), is inductively defined
as follows: If G is acyclic, then r(G) = 0. If G is strongly connected and E 6= ∅, then r(G) = 1 +
minv∈V { r(G− v) }. If G is not strongly connected, then r(G) equals the maximum cycle rank among all
strongly connected components of G.

We note that the requirement E 6= ∅ in the above definition allows to differentiate between acyclic di-
graphs and (otherwise acyclic) digraphs with loops. We also remark that the cycle rank can be equivalently
defined using decompositions, compare [30]:

Definition 2 A directed elimination tree for a nontrivially strongly connected digraph G = (V,E) is a
rooted tree T = (T , E) having the following properties:

a) T ⊆ V × 2V , and if (x,X) ∈ T , then x ∈ X .

b) The root of the tree is (v, V) for some v ∈ V .

c) There is no pair of distinct vertices of the form (x,X) and (y,X) in the forest.

d) If (x,X) is a node in T , andG[X]−x has j ≥ 0 nontrivial strongly connected components Y1, . . . , Yj ,
then (x,X) has exactly j children of the form (y1, Y1), . . . (yj , Yj) for some y1, . . . , yj ∈ V .

A directed elimination forest for a digraph G with k ≥ 0 nontrivial strongly connected components
C1, . . . Ck, is a rooted forest consisting of directed elimination trees for G[Ci], 1 ≤ i ≤ k.

Figure 1 illustrates this concept by an example. It is shown in [30] that the minimum height among all
directed elimination forests for G equals the cycle rank of G. Interestingly, the concept of elimination
forests was rediscovered in the context of sparse matrix factorization, see [36] for the undirected case
and [13] for the directed case.

Digraph Complexity Measures and Applications in Formal Language Theory 193

A
B

C
D

(A, {A,B,C,D})

(C, {B,C,D})

(B, {B}) (D, {D})

Fig. 1: An example digraph G, and a directed elimination tree for it.

3.2 Cycle Rank and other Digraph Complexity Measures
We compare the cycle rank with two other structural complexity measures, namely weak separator number
and directed pathwidth. The first measure is a generalization of separator number (see e.g. [9, 18, 34]) to
digraphs:

Definition 3 Let G = (V,E) be a digraph and let U ⊆ V be a set of vertices. A set of vertices S is
a weak balanced separator for U if every strongly connected component of G[U \ S] contains at most⌈

1
2 |U \ S|

⌉
vertices. The weak separator number of G, denoted by s(G), is defined as the maximum size,

taken over all subsets U ⊆ V , among the minimum weak balanced separators for U .

We illustrate this definition in the following example.

Example 4 Consider the digraphG in Figure 1. Removing the vertexB results in a digraph with strongly
connected components {A} and {C,D}. Since |{C,D}| ≤

⌈
1
2 (4− 1)

⌉
, the singleton set {B} forms a

weak balanced separator. Also, each induced subdigraph of G has a weak balanced separator of size 1,
so s(G) ≤ 1. On the other hand, we must have s(G) ≥ 1, sinceG contains cycles of length greater than 1.

Some readers will feel that the above definition is a bit contrived because of the ceiling operator d·e.
But this is an essential detail, as it guarantees that a digraph with a weak balanced separator of size k will
always admit a weak balanced separator of size k + 1.

In order to relate weak separator number and cycle rank, we need the following recurrence: For integers
k, n ≥ 1, let Rk(n) be given by the recurrence

Rk(n) = k +Rk

(⌈
n− k

2

⌉)
,

with Rk(r0) = r0 for r0 ≤ k.

Lemma 5 Let G be a loop-free digraph with n vertices and weak separator number at most k. Then
r(G) ≤ Rk(n)− 1.

Proof: We generalize a proof given in [18] to the case of digraphs. Let G` be the digraph obtained
from G by adding self-loops to each vertex. Then r

(
G`
)

= r(G) + 1, so we may prove instead that
r
(
G`
)
≤ Rk(n).

194 Hermann Gruber

We prove the statement by induction on the order n of G`. The base cases n ≤ k of the induction are
easily seen to hold, since the cycle rank of a digraph is always bounded above by its order.

For the induction step, assume n > k. As already mentioned, if G` admits a weak balanced separator
of size at most k, then it also has a weak balanced separator of size exactly k. Let X be such a separator.
Denote the strongly connected components of G` − X by C1, . . . , Cp. Then r

(
G`
)
≤ k + r

(
G` −X

)
,

and by definition of cycle rank,
r
(
G` −X

)
≤ max

1≤i≤p
r
(
G`[Ci]

)
.

As X is a weak balanced separator, we have |Ci| ≤ dn−k2 e for 1 ≤ i ≤ p. Hence, we can apply the
induction hypothesis to obtain

max
1≤i≤p

r
(
G`[Ci]

)
≤ Rk(dn− k

2
e).

Putting these pieces together, we have r
(
G`
)
≤ k +Rk(dn−k2 e), as desired. 2

The recurrence Rk(n) is studied in [18], where also the inequality Rk(n) ≤ k · log(n/k) is derived.(ii)

We thus have the following bound:

Corollary 6 Let G be a loop-free digraph with n vertices and weak separator number at most k. Then
r(G) ≤ k · log(n/k)− 1. 2

This inequality is sharp already in the undirected case, see [18]. Previously, a looser bound compar-
ing cycle rank to a similar notion of weak balanced separators was given in [19]. It is easy to see that
Corollary 6 improves upon the previous bound.

We turn to the comparison with directed pathwidth. That measure was introduced by Reed, Seymour
and Thomas (cf. [5]) as a generalization of pathwidth to digraphs.

Definition 7 For a digraph G = (V,E), a directed path decomposition of G is a sequence W1W2 · · ·Wr

of subsets of V , called bags, such that

a) each vertex is contained in at least one bag,

b) Wi ∩Wk ⊆Wj for all i < j < k, and

c) for each edge (u, v) ∈ E, there is a bag containing both endpoints, or there exist i, j with i < j such
that the tail u is in Wi and the head v is in Wj .

The width of a directed path decomposition is defined as the maximum cardinality among all bags minus 1.
The directed pathwidth is defined as the minimum width among all directed path decompositions for G.

For algorithmic constructions, it is often useful to work with a certain normal form of directed path
decompositions. A directed path decomposition is normal, if adjacent bags may differ in at most one
vertex, and it is easy to transform a directed path decomposition into a normal one. We return to our
running example to illustrate these concepts.

(ii) Here log denotes the binary logarithm.

Digraph Complexity Measures and Applications in Formal Language Theory 195

Example 8 Consider again the digraph G in Figure 1. The sequence

{A,B} {B,C} {D}

forms a directed path decomposition, and the sequence

{A,B} {B} {B,C} {C} ∅ {D}

forms a normal directed path decomposition for G. Furthermore, observe that the intersection of the two
adjacent bags {B} and {B,C} forms a weak balanced separator.

One can show in general that, in a normal directed path decomposition, there exists a pair of adjacent
bags “somewhere in the middle”, whose intersection forms a weak balanced separator.

Without loss of generality, one can assume that, if Wi and Wi+1 are adjacent bags for 1 ≤ i < n, then
Wi 6= Wi+1, and thus Wi ∩Wi+1 ≤ dpw(G). Altogether, this yields the following relation between
weak balanced separator number and directed pathwidth:

Lemma 9 Let G be a digraph. Then s(G) ≤ dpw(G). 2

How does cycle rank relate to directed pathwidth? We can answer this using directed elimination
forests.

Lemma 10 Let G be a digraph. Then dpw(G) ≤ r(G).

Proof: We prove by induction that each directed elimination forest of height k for G can be transformed
into a directed path decomposition for G of width at most k.

If k = 0, then G is acyclic, and thus clearly admits a directed path decomposition of width 0.
For the induction step, assume the directed elimination forest for G has roots (x1, C1), (x2, C2),. . . ,

(xr, Cr), with the strongly connected components Ci in topological order. Let Gi = G[Ci] − xi. Then
Gi has cycle rank at most k − 1. By induction assumption, each digraph Gi admits a directed path
decomposition of width at most k−1. By adding the vertex xi to each bag in the respective decomposition
for Gi, we obtain a directed path decomposition for G[Ci]. Concatenating the r individual directed path
decompositions while respecting the above topological order, we obtain a directed path decomposition of
width at most k for G, as desired. 2

Altogether, we have derived the following chain of inequalities:

Theorem 11 Let G be a loop-free digraph with n vertices and weak separator number k. Then

k ≤ dpw(G) ≤ r(G) ≤ k · log(n/k)− 1.

Quite a few more structural complexity measures on digraphs were studied recently, such as directed
tree-width, DAG-width, and Kelly-width. As detailed in [25], each of these measures is bounded below
by a function that is linear in the weak separator number(iii). On the other hand, all of those are bounded
above by the directed pathwidth (cf. [25]), so Theorem 11 will also serve for comparing them with cycle
rank, and with weak separator number.

(iii) The notion used in [25] corresponds to our notion of weak separator number up to a constant factor.

196 Hermann Gruber

4 Computational Aspects of Cycle Rank
4.1 Computational Complexity
We turn to algorithmic questions. First, we classify the computational complexity of the decision problem
CYCLE RANK: Given a digraph G and an integer k, determining whether the cycle rank of G is at
most k.

Theorem 12 The CYCLE RANK problem is NP-complete, and this still holds when requiring that the
input digraph is strongly connected.

Proof: Membership in NP can be seen by the equivalent definition using directed elimination forests:
Let G = (V,E) denote the given digraph. Every directed elimination forest for G contains at most |V |
tree vertices, and each tree vertex is of size is at most |V |. A nondeterministic polynomial-time bounded
Turing machine can guess such a witness, and then verify that it indeed constitutes a directed elimination
forest of height at most k for G.

For NP-hardness, we use a corresponding result known for the undirected case. Given a symmetric
loop-free digraph G, it is easy to see (e.g. by [31, Lem. 2.2]) that an undirected elimination forest of
height k + 1 in the sense of [9, 31] corresponds to a directed elimination forest of height k in our sense
(the term +1 accounts for the slightly different notion of height used in [31]). However, determining the
minimum height among all undirected elimination forests is NP-complete, also for (strongly) connected
undirected graphs [9]. 2

Using tools from formal language theory, we will prove later that NP-hardness still holds for digraphs
of maximum outdegree at most 2 and of maximum total degree at most 4.

4.2 Approximate Computation
How do we cope with this negative result? One possibility is to look for an approximate solution. Indeed,
it is known that for undirected graphs, the cycle rank problem admits an input-dependent polynomial-time
approximation algorithm [9]. In the following, we devise a more general approximation algorithm, which
also addresses the case of unsymmetric digraphs. The basic pattern of our algorithm is divide-and-conquer
along separators.

Theorem 13 The CYCLE RANK problem admits a polynomial-time approximation within a factor
of O((log n)3/2).

Proof: The following recursive procedure computes a directed elimination forest for the induced sub-
graph G[W], where W ⊂ V is passed as parameter to the procedure.

If G[W] consists of several strongly connected components, apply the procedure recursively to each of
these; The union of these results gives a directed elimination forest for G[W].

Otherwise, use the polynomial-time algorithm from [25, Corollary 2.25] to find a small vertex sub-
set S ⊆ W in G[W] with the property that every strongly connected component of G[W] − S has at
most 3

4 |W | vertices. Then pass the digraph G[W] − S as parameter to the recursive procedure. Upon
returning, the directed elimination forest F returned for G[W]− S is then extended, one vertex at a time,
for each vertex s from S.

Digraph Complexity Measures and Applications in Formal Language Theory 197

More precisely, put the elements of S in arbitrary order. Then for given s in S, let X denote the
set of vertices occurring before s. Assuming we have already computed a directed elimination forest
forG[W ∪X], we now show how to extend this to a forest forG[W ∪X ∪s]. Initially, the setX is empty,
and we proceed for each s until X = S. Let C1, . . . Cp denote those strongly connected components of
the digraphG[W ∪X] for whichG[W ∪{s}∪

⋃
i Ci] is strongly connected, and letD1, . . . , Dr denote the

remaining strongly connected components in G[W ∪X]. The elimination forest for G[W ∪X] contains
an elimination tree for each G[Ci], and for each G[Di]. Make up a new root (s,X ∪ {s}), and attach
the directed elimination trees for the digraphs G[Ci] as children to that new root. This gives a directed
elimination tree for G[W ∪{s}∪

⋃
i Ci]. The union of this tree with the directed elimination trees for the

strongly connected components D1, . . . , Dr yields a directed elimination forest for G[W ∪X ∪ s]. This
completes the description of the subroutine for extending the forest.

The recursion terminates as soon as the size of W decreases below β(log n)3/2. In this case, simply
return an (arbitrary) directed elimination forest for G[W].

Here, the number β is a fixed, suitably chosen, constant coming from the analysis below. This completes
the description of the algorithm.

It remains to analyze the above algorithm. It is readily checked that the algorithm returns an elimination
forest for G. For the performance guarantee, those recursive calls that simply partition the graph into
strongly connected components do not add to the height of the resulting forest; if we restrict our attention
to these recursive calls that compute a suitable vertex subset S, the depth of the recursion tree isO(log n).
At each such step, we can find in polynomial time a suitable set S of size at most βk

√
log n, where k

is the directed pathwidth of G, and β is some known constant (cf. [25, Corollary 2.25]). The recursion
terminates with an elimination forest of height at most β · (log n)3/2. Thus the overall height is bounded
by

β · k ·
√

log n ·O(log n) + β · (log n)3/2 = O(k · (log n)3/2),

where k is the directed pathwidth of G. By Lemma 10, we have k ≤ r(G). In this way, we have a
polynomial-time O((log n)3/2)-approximation for cycle rank. 2

The above performance guarantee matches the best previous result known for the undirected case [1].
For other digraph complexity measures, such as D-width and directed pathwidth, approximation algo-
rithms in a similar vein were recently given in [25].

4.3 Exact Computation
In certain circumstances, an approximation guarantee within a factorO((log n)3/2) may not suffice. Thus
we also take a look at exact algorithms for computing the cycle rank.

The naı̈ve algorithm for determining cycle rank according to Definition 1 entails inspecting n! possibil-
ities on a graph with n vertices. While one may not expect a polynomial-time algorithm, we can still do
much better:

Theorem 14 The cycle rank of an n-vertex digraph can be computed in time and space O∗(2n).

Proof: We show how the characterization of the cycle rank of a digraph G = (V,E) in terms of the
directed elimination forests from Definition 2 can be turned into a dynamic programming scheme. We
only consider the case G itself is nontrivially strongly connected—otherwise, we obtain the cycle rank by
taking the minimum among the cycle ranks of the nontrivial strongly connected components of G. For

198 Hermann Gruber

a nontrivial strongly connected subset of vertices X ⊆ V and a vertex x ∈ X , let r(x,X) denote the
minimum height among all elimination forests for G with root (x,X). Then r(G) = minv∈V r(v, V),
so it suffices to design an algorithm computing r(v, V) for each v ∈ V . By inspecting Definition 2, we
obtain the recurrence

r(x,X) =

{
1 if G[X]− x is acyclic
1 + maxY miny∈Y r(y, Y) otherwise

(1)

Here Y runs over all nontrivial strongly connected components of G[X] − x (of which there can be at
most |X|−1). Using the classic trick of memoization (see [14]), this recurrence can be easily transformed
into a dynamic programming scheme with memoization that runs in time |S| · nO(1), where S ⊆ 2V is
the set of strongly connected subsets of the digraph G. 2

The reader is invited to try out this algorithm for the digraph depicted in Figure 1. The bottleneck in the
algorithm is the requirement of computing and storing the cycle rank for all elements of S, namely of the
family of strongly connected subsets in the input digraph. For a complete digraph, we have |S| = 2n. But
this bound can no longer be reached for digraphs of bounded maximum outdegree. For undirected graphs
of maximum degree d, a nontrivial bound on the number of (weakly) connected subsets was established
recently in [7]. As it turns out, their bound allows the following generalization to the theory of digraphs,
in that the original proof carries over with obvious modifications:

Lemma 15 Let G be a digraph of order n with maximum outdegree at most d. Then the number of
strongly connected subsets of V is at most γn + n, with γ = (2d+1 − 1)1/(d+1). In particular, for d = 2,
we have γ .

= 1.9129. 2

On digraphs of bounded outdegree, we thus obtain the following improved bound on the running time
of the above algorithm:

Theorem 16 LetG be a digraph of order n with constant maximum outdegree d. Then the cycle rank ofG
can be computed in time and space O∗ ((2− ε)n), where ε is a constant depending on d. In particular,
for digraphs of maximum outdegree 2, the cycle rank can be computed in time and space O∗(1.9129n). 2

It seems that Lemma 15 has a host of algorithmic consequences. For illustration, recall that a vertex
subset S ⊆ V of a digraph G is a directed feedback vertex set, if removing S from G leaves an acyclic
digraph. Off the cuff, we can devise an exact algorithm for minimum directed feedback vertex set on
sparse digraphs.

Theorem 17 Let G be a digraph of order n with constant maximum outdegree d. Then a minimum
directed feedback vertex set of G can be computed in time and space O∗ ((2− ε)n), where ε is a constant
depending on d. In particular, for digraphs of maximum outdegree 2, a minimum directed feedback vertex
set can be computed in time and space O∗(1.9129n).

Proof: By duality, the task of enumerating all minimal directed feedback vertex sets is equivalent to
enumerating all maximal acyclic subsets, that is, maximal vertex subsets that induce a directed acyclic
graph. Here, “minimal” and “maximal” are meant with respect to set inclusion.

Since there is an algorithm enumerating all minimal directed feedback vertex sets (or, equivalently, all
maximal acyclic subsets) with polynomial delay [37], it only remains to derive a combinatorial bound on
the number of such sets. A strongly connected subset S ⊂ V in G is called a minimal strongly connected

Digraph Complexity Measures and Applications in Formal Language Theory 199

subset, if S contains a vertex v such that S − v is an acyclic subset. Clearly, in this case, S − v is a
maximal acyclic subset. Thus, each minimal strongly connected subset S will give rise to at most |S| ≤ n
maximal acyclic subsets; and each maximal acyclic subset can be obtained in this way from a minimal
strongly connected subset. Thus the total number of maximal acyclic subsets in G is at most n times the
number of (minimal) strongly connected subsets in G. The result now follows with Lemma 15. 2

The above running time appears reasonable if we consider the following facts: First, even on digraphs
of maximum outdegree at most 2, the problem is NP-complete [16, Problem GT7]. Second, the fastest
known exact algorithm for digraphs of unbounded outdegree [33] runs in time O∗(1.9977n). Even for di-
graphs of maximum total degree at most 4, the best previous result [32] was a running time ofO∗(1.945n).
Observing that maximum total degree at most 4 implies maximum indegree at most 2 or maximum out-
degree at most 2, our algorithm is both faster than the one given in [32], and encompasses a larger class
of digraphs. Third, easy examples show that digraphs with outdegree 2 can have at least 1.4142n minimal
directed feedback vertex sets [37].

5 Star Height of Regular Expressions
As it turns out, the cycle rank of digraphs is intimately related to structural and descriptional complexity
aspects of regular expressions. The star height of a regular language L, denoted by h(L), is defined
as the minimum nesting depth of stars in any regular expression describing L. The following relation
between star height and the cycle rank of nondeterministic finite automata (NFAs) was shown already in
the seminal paper on star height [12].

Theorem 18 (Eggan’s Theorem) Let L be a regular language. Then

h(L) = min{ r(A) | A is an NFA accepting L }.

Here, r(A) denotes the cycle rank of the digraph underlying the transition structure of A.

As an aside, Eggan’s Theorem was recently used to obtain a powerful lower bound technique for the
minimum required length of regular expressions for a given regular language:

Lemma 19 (Star Height Lemma, [19]) Let L be a regular language. If L admits a regular expression
of length n, then n ≥ 2Ω(h(L)).

The gist of the proof is that each regular expression can be converted into an equivalent NFA of compa-
rable size, but whose transition structure is only poorly connected. The result then follows using Eggan’s
Theorem. In [19], this method was used to prove the unexpected result that complementing regular lan-
guages can cause a doubly-exponential blow-up in the minimum required regular expression length.

Of course, the minimum in Eggan’s Theorem is taken over infinitely many NFAs, and indeed for more
than two decades, it was unknown whether there exists an algorithm deciding the STAR HEIGHT prob-
lem: given a deterministic finite automaton (DFA) A and an integer k, determine whether the star height
of L(A) is at most k, a question raised in [12]. Although the problem is now known to be decidable,
the best known upper bound(iv) to date is EXPSPACE [26]. To the best of our knowledge, nontrivial

(iv) The noted upper bound holds more generally for a given NFA if also an NFA accepting the complement language is provided
as part of the input. Recall that complementing a DFA does not affect its size, whereas complementing an NFA can cause an
exponential blow-up in the required number of states [21].

200 Hermann Gruber

lower bounds are known only for the case where the input is specified succinctly, as an NFA: Determining
the star height of a language specified as an NFA is PSPACE-hard [24]. Yet, as illustrated in [24],
a large multitude of natural questions about the language accepted by a given NFA is PSPACE-hard,
whereas the corresponding questions often become computationally easy if a DFA is given. Therefore,
such a hardness result renders more service to understanding the effect of succinct input descriptions than
to understanding the computational nature of the core problem at hand. That is why we deliberately stick
to the convention to specify the input as a DFA.

Here we settle the complexity of the star height problem for a subclass of the regular languages, namely
the bideterministic languages. The decision problem BIDETERMINISTIC STAR HEIGHT is defined
as follows: Given a bideterministic finite automaton A and an integer k, decide whether the star height
of L(A) is at most k.

Bideterministic finite automata have the special property that the star height problem of bideterministic
languages boils down to determining the cycle rank of a digraph. The following theorem is proved in [29]:

Theorem 20 (McNaughton’s Theorem) Let L be a bideterministic language, and let A be the minimal
trim (i.e., without a dead state) DFA accepting L. Then h(L) = r(A).

On the positive side, the algorithmic results from the previous section easily translate to a formal lan-
guage setup using McNaughton’s Theorem. For approximating STAR HEIGHT, we have to resort to
Eggan’s Theorem, giving only anO(n)-approximation. In the bideterministic case, we have the following
counterpart to Theorem 13:

Theorem 21 The BIDETERMINISTIC STAR HEIGHT problem admits a polynomial-time approxi-
mation within a factor of O((log n)3/2). 2

We also have a natural counterpart to Theorem 16:

Theorem 22 Let A be a bideterministic finite automaton with n states over an input alphabet of size k.
Then the star height of L(A) can be computed exactly, in time and space O∗ ((2− ε)n), where ε is a
constant depending on k. In particular, for the case of binary input alphabets, the star height can be
computed in time and space O∗(1.9129n). 2

On the negative size, also the NP-hardness result for CYCLE RANK translates to its language-theoretic
counterpart. Moreover, we show that already the case of binary input alphabets is that hard:

Theorem 23 The BIDETERMINISTIC STAR HEIGHT problem is NP-complete, and this still holds
when restricted to bideterministic automata over binary input alphabets.

Proof: We first show NP-completeness for the case of unbounded alphabet size, and then provide a
polynomial-time reduction to the case of binary alphabets.

For membership in NP, we use McNaughton’s Theorem (Theorem 20) to reduce the problem to CY-
CLE RANK, and the latter is in NP by Theorem 12.

To establish NP-hardness, we reduce from the problem of determining for a strongly connected digraph
G = (E, V) and an integer k whether the cycle rank is at most k, which is NP-hard by Theorem 12. For
a vertex v in V , define

L(G, v) = {w ∈ E∗ | w is a walk in G starting and ending in v }.

Digraph Complexity Measures and Applications in Formal Language Theory 201

A deterministic finite automaton A accepting L(G, v) has V as set of states and for each edge (x, y) ∈ E
a transition labeled (x, y) from x to y. The start and only accepting state is v. It is readily verified
that A accepts L(G, v), is bideterministic, and that A is the minimal trim DFA for this language. By
construction, r(A) = r(G), and r(A) = h(L) by Theorem 20. This completes the NP-completeness
proof for unbounded alphabet size.

We turn to the case of binary alphabets. Given an instance (A, k) of BIDETERMINISTIC STAR
HEIGHT, we construct in polynomial time a bideterministic finite automaton B over the alphabet {a, b},
such that the star height of B equals the star height of A. Assume the input alphabet of A is Σ =
{a1, a2, . . . , ar}. The automaton B will accept the homomorphic image of L(A) under the homomor-
phism ρ : Σ → {a, b} given by ρ(ai) = aibr+1−i, for 1 ≤ i ≤ r. It is known [30] that ρ preserves
star height, that is, for every regular language L, the image of L under ρ is of the same star height as L.
It remains to construct, in polynomial time, a bideterministic automaton B accepting ρ(L(A)): automa-
ton B will have the states of A, plus some extra states. For each state q copied from A, we add r states
q+
1 , q

+
2 , . . . q

+
r and r more states q−1 , q

−
2 , . . . q

−
r to the state set of B. The transition relation of B is given

by requiring that whenever there is a transition p ai→ q in A, then B admits the sequence of transitions

p
a→ p+

1
a→ p+

2 · · ·
a→ p+

i
b→ q−r−i

b→ · · · q−2
b→ q−1

b→ q.

There are no other transitions in B. By construction, B accepts ρ(L(A)). It is easily verified that if A is
bideterministic, then so is B. 2

Returning again to CYCLE RANK, we observe that the digraph underlying a bideterministic automa-
ton over a binary alphabet always has maximum outdegree at most 2 and maximum total degree at most 4.
The correspondence given by McNaughton’s Theorem between bideterministic automata and digraphs
yields the following consequence:

Corollary 24 The CYCLE RANK problem restricted to digraphs of maximum outdegree at most 2 and
total degree at most 4 remains NP-complete. 2

6 Conclusion
In this work, we explored measures for the complexity of digraphs, and their applications. We paid
particular attention to the cycle rank of digraphs and its relation to other digraph complexity measures, as
well as its connection to the star height of regular languages. A tabular summary of our main algorithmic
results is given in the Appendix.

Regarding cycle rank, the undirected case seems to be much better understood than the general case.
An intriguing open question is whether the cycle rank problem is fixed-parameter tractable. This is known
to be true on undirected graphs, see [8].

Regarding the star height problem, the picture is even less clear. The main problem, namely the decid-
ability status, has been settled for more than 20 years. Still, the computational complexity of this problem
is not well understood. From the viewpoint of a computational complexity, we studied the “easiest hard
case”, and showed that (the non-succinct version of) this problem is NP-hard. Currently the best upper
bound [26] is EXPSPACE. Tightening the eminent gap between these bounds is certainly a challenging
theme for further research.

202 Hermann Gruber

Acknowledgements
The author would like to thank Markus Holzer for carefully reading an earlier draft of this paper, and for
providing some valuable suggestions. Also thanks to the referee and to the editor for some useful hints.

References
[1] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. o(

√
(logn)) approximation

algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In Harold N. Gabow and Ronald
Fagin, editors, 37th Annual ACM Symposium on Theory of Computing, pages 573–581, 2005.

[2] Hannah Alpert. Rank numbers of grid graphs. Discrete Mathematics, 310(23):3324–3333, 2010.

[3] Dana Angluin. Inference of reversible languages. Journal of the ACM, 29(3):741–765, 1982.

[4] Amotz Bar-Noy, Panagiotis Cheilaris, Michael Lampis, Valia Mitsou, and Stathis Zachos. Ordered coloring
grids and related graphs. Theoretical Computer Science, 444:40–51, 2012.

[5] János Barát. Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics,
22(2):161–172, 2006.

[6] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdrzálek. The DAG-width of
directed graphs. Journal of Combinatorial Theory, Series B, 102(4):900–923, 2012.

[7] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling salesman problem in
bounded degree graphs. ACM Transactions on Algorithms, 8(2):18, 2012.

[8] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter Kratsch, Haiko Müller, and Zsolt
Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics, 11(1):168–181, 1998.

[9] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating treewidth, path-
width, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255, 1995.

[10] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter algorithm for the
directed feedback vertex set problem. Journal of the ACM, 55(5), 2008.

[11] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 3rd edition, 2006.

[12] Lawrence C. Eggan. Transition graphs and the star height of regular events. Michigan Mathematical Journal,
10(4):385–397, 1963.

[13] Stanley C. Eisenstat and Joseph W. H. Liu. The theory of elimination trees for sparse unsymmetric matrices.
SIAM Journal on Matrix Analysis and Applications, 26(3):686–705, 2005.

[14] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2010.

[15] Robert Ganian, Petr Hlinený, Joachim Kneis, Alexander Langer, Jan Obdrzálek, and Peter Rossmanith. On
digraph width measures in parameterized algorithmics. In Jianer Chen and Fedor V. Fomin, editors, 4th In-
ternational Workshop on Parameterized and Exact Computation, volume 5917 of Lecture Notes in Computer
Science, pages 185–197. Springer, 2009.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman, 1979.

[17] Hermann Gruber. Digraph complexity measures and applications in formal language theory. In David Antoš,
Milan Češka, Zdeněk Kotásek, Mojmı́r Křetı́nský, Luděk Matyska, and Tomáš Vojnar, editors, 4th Workshop on
Mathematical and Engineering Methods in Computer Science, Znojmo, Czech Republic, pages 60–67, 2008.

Digraph Complexity Measures and Applications in Formal Language Theory 203

[18] Hermann Gruber. On balanced separators, treewidth, and cycle rank. Preprint, 2010. Available online as
arXiv:1012.1344v1 [cs.DM].

[19] Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity, and regular expression size.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walkuwiewicz, editors, 35th International Colloquium on Automata, Languages and Programming (Part II),
volume 5126 of Lecture Notes in Computer Science, pages 39–50. Springer, 2008.

[20] Kosaburo Hashiguchi. Algorithms for determining relative star height and star height. Information and Compu-
tation, 78(2):124–169, 1988.

[21] Markus Holzer and Martin Kutrib. Nondeterministic descriptional complexity of regular languages. Interna-
tional Journal of Foundations of Computer Science, 14(6):1087–1102, 2003.

[22] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Series in Computer Science. Addison-Wesley, 1979.

[23] Paul Hunter. LIFO-search on digraphs: A searching game for cycle-rank. In Olaf Owe, Martin Steffen, and
Jan Arne Telle, editors, 18th International Symposium on Fundamentals of Computation Theory, volume 6914
of Lecture Notes in Computer Science, pages 217–228. Springer, 2011.

[24] Harry B. Hunt III and Daniel J. Rosenkrantz. Computational parallels between the regular and context-free
languages. SIAM Journal on Computing, 7(1):99–114, 1978.

[25] Shiva Kintali, Nishad Kothari, and Akash Kumar. Approximation algorithms for directed width parameters.
Preprint, 2011. Available online as arXiv:1107.4824v1 [cs.DS].

[26] Daniel Kirsten. On the complexity of the relative inclusion star height problem. Advances in Computer Science
and Engineering, 5(3):173–211, 2010.

[27] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity in digraph searching.
Theoretical Computer Science, 412(35):4688–4703, 2011.

[28] Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of digraph decompositions
and complexity measures. Discrete Optimization, 8(1):129–138, 2011.

[29] Robert McNaughton. The loop complexity of pure-group events. Information and Control, 11(1/2):167–176,
1967.

[30] Robert McNaughton. The loop complexity of regular events. Information Sciences, 1(3):305–328, 1969.

[31] Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds.
European Journal of Combinatorics, 27(6):1022–1041, 2006.

[32] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar. Efficient exact algorithms through enumerating maxi-
mal independent sets and other techniques. Theory of Computing Systems, 41(3):563–587, 2007.

[33] Igor Razgon. Computing minimum directed feedback vertex set in O∗(1.9977n). In Giuseppe F. Italiano,
Eugenio Moggi, and Luigi Laura, editors, Proceedings of the 10th Italian Conference on Theoretical Computer
Science, pages 70–81. World Scientific, 2007.

[34] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algo-
rithms, 7(3):309–322, 1986.

[35] Mohammad Ali Safari. D-Width: A more natural measure for directed tree width. In Joanna Jedrzejowicz
and Andrzej Szepietowski, editors, 30th International Symposium on Mathematical Foundations of Computer
Science, volume 3618 of Lecture Notes in Computer Science, pages 745–756. Springer, 2005.

[36] Robert Schreiber. A new implementation of sparse Gaussian elimination. ACM Transactions on Mathematical
Software, 8(3):256–276, 1982.

204 Hermann Gruber

[37] Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal solutions of feedback problems.
Discrete Applied Mathematics, 117(1-3):253–265, 2002.

[38] Joachim von zur Gathen. Irreducibility of multivariate polynomials. Journal of Computer and System Sciences,
31(2):225–264, 1985.

Appendix
CYCLE RANK

Instance. A digraph G and an integer k.

Question. Is the cycle rank of G at most k?

Good news. Approximable within O((logn)3/2) in polynomial time (Thm. 13). Exact solution
can be computed in time O∗(1.9129n) for digraphs with maximum outdegree at
most 2; and for unbounded outdegree in time O∗(2n) (Thm. 16).

Bad news. NP-complete (Thm. 12). Problem is NP-hard already for digraphs of maximum
outdegree 2 and maximum total degree 4 (Cor. 24); NP-hard also for some classes
of undirected graphs (e.g., bipartite and cobipartite) [8].

DIRECTED FEEDBACK VERTEX SET

Instance. A digraph G and an integer k.

Question. Does G admit a directed feedback vertex set of cardinality at most k?

Good news. For digraphs with maximum outdegree at most 2, exact solution can be computed
in time O∗(1.9129n) (Thm. 17); and in time O∗(1.9977n) for unbounded outde-
gree [33]. Problem is fixed-parameter tractable [10].

Bad news. NP-complete, already for digraphs of maximum outdegree 2 [16, Problem GT7].

BIDETERMINISTIC STAR HEIGHT

Instance. A bideterministic finite automaton A and an integer k.

Question. Is the star height of L(A) at most k?

Good news. Approximable within O((logn)3/2) in polynomial time (Thm. 21). Exact solution
can be computed in time O∗(1.9129n) for binary alphabets; and for unbounded
alphabet size in time O∗(2n) (Thm. 22).

Bad news. NP-complete; NP-hardness holds already for binary alphabets (Thm. 23).

STAR HEIGHT

Instance. A deterministic finite automaton A and an integer k.

Question. Is the star height of L(A) at most k?

Good news. Problem is decidable [20]. Exact solution can be computed within exponential
space and doubly exponential time [26].

Bad news. NP-hard, already for binary alphabets (Thm. 23). Problem is PSPACE-hard
if input given by an nondeterministic finite automaton in place of a deterministic
one [24].

	Introduction
	Preliminaries
	Asymptotic Notation
	Digraphs
	Formal Languages

	Cycle Rank of Digraphs
	Cycle Rank and Directed Elimination Forests
	Cycle Rank and other Digraph Complexity Measures

	Computational Aspects of Cycle Rank
	Computational Complexity
	Approximate Computation
	Exact Computation

	Star Height of Regular Expressions
	Conclusion

