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Abstract. We improve on some recent results on lower bounds for con-
version problems for regular expressions. In particular we consider the
conversion of planar deterministic finite automata to regular expressions,
study the effect of the complementation operation on the descriptional
complexity of regular expressions, and the conversion of regular expres-
sions extended by adding intersection or interleaving to ordinary regular
expressions. Almost all obtained lower bounds are optimal, and the pre-
sented examples are over a binary alphabet, which is best possible.

1 Introduction

It is well known that regular expressions are equally expressive as finite au-
tomata. In contrast to this equivalence, a classical result due to Ehrenfeucht
and Zeiger states that finite automata, even deterministic ones, can sometimes
allow exponentially more succinct representations than regular expressions [4].
Although they obtained a tight lower bound on expression size, their examples
used an alphabet of growing size.

Reducing the alphabet size remained an open challenge [5] until the recent
advent of new proof techniques, see [8, 9, 12]—indeed most of our proofs in this
paper rely on the recently established relation between regular expression size
and star height of regular languages [9]. Although this resulted in quite a few
new insights into the nature of regular expressions, see also [7, 10, 11], proving
tight lower bounds for small alphabets remains a challenging task, and not all
bounds in the mentioned references are both tight and cover all alphabet sizes.
In this work, we close some of the remaining gaps: in the case of converting
planar finite automata to regular expressions, we prove the bound directly, by
finding a witness language over a binary alphabet. For the other questions under
consideration, namely the effect of complementation and of extending regular
expression syntax by adding an intersection or interleaving operator, proceeding
in this way appears more difficult. Yet, sometimes it proves easier to find wit-
ness languages over larger alphabets. For this case, we also devise a new set of
encodings which are economic and, in some precise sense, robust with respect to
both the Kleene star and the interleaving operation. This extends the scope of
known proof techniques, and allows us to give a definitive answer to some ques-
tions regarding the descriptional complexity of regular expressions that were not



Conversion known results this paper with |Σ| = 2

planar DFA to RE 2Θ(
√

n) for |Σ| = 4 [9] 2Θ(
√

n) [Thm. 3]

22Ω(
√

n log n)

for |Σ| = 2 [9]
¬RE to RE

22Ω(n)

for |Σ| = 4 [8]
22Θ(n)

[Thm. 6]

RE( ∩ ) to RE 22Ω(
√

n)

for |Σ| = 2 [7] 22Θ(n)

[Thm. 7]

22Ω(n/ log n)

[Thm. 14]
RE( x ) to RE 22Ω(

√

n)

for |Σ| const. [7]
22Θ(n)

for |Σ| = O(n) [Thm. 8]

Table 1. Comparing the lower bound results for conversion problems of deterministic
finite automata (DFA), regular expressions (RE), and regular expressions with addi-
tional operations (RE(·)), where ∩ denotes intersection, ¬ complementation, and x

the interleaving or shuffle operation on formal languages. Entries with a bound in Θ(·)
indicate that the result is best possible, i.e., refers to a lower bound matching a known
upper bound.

yet settled completely in previous work [5, 7–9]; also note that these problems
become easy in the case of unary alphabets [5]. Our main results are summarized
and compared to known results in Table 1.

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [15].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the
alphabet Σ, including the empty word ε. The length of a word w is denoted
by |w|, where |ε| = 0. A (formal) language over the alphabet Σ is a subset
of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the
usual way:1 ∅, ε, and every letter a with a ∈ Σ is a regular expression; and
when r1 and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)

∗ are
also regular expressions. The language defined by a regular expression r, denoted
by L(r), is defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1 + r2) =
L(r1)∪L(r2), L(r1 ·r2) = L(r1)·L(r2), and L(r∗1) = L(r1)

∗. The size or alphabetic
width of a regular expression r over the alphabet Σ, denoted by alph(r), is defined
as the total number of occurrences of letters of Σ in r. For a regular language L,
we define its alphabetic width, alph(L), as the minimum alphabetic width among
all regular expressions describing L.

Our arguments on lower bounds for the alphabetic width of regular lan-
guages is based on a recent result that utilizes the star height of regular lan-

1 For convenience, parentheses in regular expressions are sometimes omitted and the
concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.



guages [9]. Here the star height of a regular language is defined as follows: for
a regular expression r over Σ, the star height, denoted by h(r), is a struc-
tural complexity measure inductively defined by: h(∅) = h(ε) = h(a) = 0,
h(r1 · r2) = h(r1 + r2) = max (h(r1), h(r2)), and h(r∗1) = 1 + h(r1). The star
height of a regular language L, denoted by h(L), is then defined as the minimum
star height among all regular expressions describing L. The next theorem estab-
lishes the aforementioned relation between alphabetic width and star height of
regular languages [9]:

Theorem 1. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3 (h(L)−1)−1.

The star height of a regular language appears to be more difficult to de-
termine than its alphabetic width, see, e.g., [13]. Fortunately, the star height
can be determined more easily for bideterministic regular languages: A DFA is
bideterministic, if it has a single final state, and if the NFA obtained by revers-
ing all transitions and exchanging the roles of initial and final state is again
deterministic—notice that, by construction, this NFA in any case accepts the
reversed language. A regular language L is bideterministic if there exists a bide-
terministic finite automaton accepting L. For these languages, the star height
can be determined from the digraph structure of the minimal DFA: the cycle
rank of a digraph G = (V,E), denoted by cr(G), is inductively defined as fol-
lows: (1) If G is acyclic, then cr(G) = 0. (2) If G is strongly connected, then
cr(G) = 1+minv∈V {cr(G− v)}, where G− v denotes the graph with the vertex
set V \{v} and appropriately defined edge set. (3) If G is not strongly connected,
then cr(G) equals the maximum cycle rank among all strongly connected com-
ponents of G. For a given finite automaton A, let its cycle rank, denoted by
cr(A), be defined as the cycle rank of the underlying digraph. Eggan’s Theorem
states that the star height of a regular language equals the minimum cycle rank
among all NFAs accepting it [3]. Later, McNaughton [18] proved the following:

Theorem 2 (McNaughton’s Theorem). Let L be a bideterministic language,
and let A be the minimal trim, i.e., without a dead state, deterministic finite au-
tomaton accepting L. Then h(L) = cr(A).

In fact, the minimality requirement in the above theorem is not needed, since
every bideterministic finite automaton in which all states are useful is already a
trim minimal deterministic finite automaton. Here, a state is useful if it is both
reachable from the start state, and if some final state is reachable from it.

3 Lower Bounds on Regular Expression Size

This section consists of three parts. First we show an optimal bound convert-
ing planar deterministic finite automata to equivalent regular expressions and
then we present our results on the alphabetic width on complementing regular
expression and on regular expressions with intersection and interleaving. While
the former result utilizes a characterization of cycle rank in terms of a cops and
robbers game given in [9], the latter two results are mainly based on star-height-
preserving morphisms.



3.1 Converting Planar DFAs into Regular Expressions

Recently, it was shown that for planar finite automata, one can construct equiv-
alent regular expressions of size at most 2O(

√
n), for all alphabet sizes polynomial

in n [5]. This is a notable improvement over the general case, since conversion
from n-state deterministic finite automata to equivalent regular expressions was
shown to be of order 2Θ(n) in [9]. Also in [9], for alphabet size at least four a
lower bound on the conversion of planar deterministic finite automata to regular
expressions of 2Θ(

√
n) was proven. We improve this result to alphabets of size

two, using a characterization of cycle rank in terms of a cops and robber game
from [9].

Theorem 3. There is an infinite family of languages Ln over a binary alphabet
acceptable by n-state planar deterministic finite automata, such that alph(Ln) =
2Ω(

√
n).

Proof. By Theorems 1 and 2, it suffices to find an infinite family of bideterminis-
tic finite automata Ak of size O(k2) such that the digraph underlying Ak has cy-
cle rank Ω(k). The deterministic finite automata Ak witnessing the claimed lower

Fig. 1. A drawing of the graph G3.
When viewed as automaton A3, the solid
(dashed, respectively) arrows indicate a-
transitions (b-transitions, respectively).

bound are inspired by a family of
digraphs Gk defined in [16]. These
graphs each admit a planar drawing as
the union of k concentric equally di-
rected 2k-cycles, which are connected
to each other by 2k radial directed
k-paths, the first k of which are di-
rected inwards, while the remaining k

are directed outwards; see Figure 1
for illustration. Formally, for k ≥ 1,
let Gk = (V,E) be the graph with
vertex set V = {ui,j | 1 ≤ i, j ≤
k } ∪ { vi,j | 1 ≤ i, j ≤ k }, and
whose edge set can be partitioned
into a set of directed 2k-cycles Ci,
and two sets of directed k-paths Pi

and Qi with 1 ≤ i ≤ k. Here each Ci

admits a walk visiting the vertices
ui,1, ui,2, . . . , ui,k, vi,1, vi,2, . . . , vi,k in
order, each Pi admits a walk visiting the vertices u1,i, u2,i, . . . , uk,i in order,
and Qi admits a walk visiting the vertices vk,i, vk−1,i, . . . , vk,1 in order.

Fix {a, b} as a binary input alphabet. If we interpret the edges in Gk belong-
ing to the cycles Ci as a-transitions, the edges belonging to the paths Pi and Qi

as b-transitions, interpret the vertices as states and choose a single initial and a
single final state (both arbitrarily), we obtain a finite automaton Ak with O(k2)
states whose underlying digraph is Gk. It is easily observed that Ak is bideter-
ministic; thus it only remains to show that for the underlying digraph Gk the
identity cr(Gk) = Ω(k) holds.



To this end, we use the cops and robber game characterization of graphs
having cycle rank k given in [9]. A game quite similar to the mentioned one is
studied in [16]; there a lower bound of k on the number of required cops on Gk

is proved. It is not hard to prove that the lower bound carries over and cr(Gk)
is at least k − 1. ⊓⊔

3.2 Operations on Regular Expressions: Alphabetic Width of
Complementation

As noted in [5], the naive approach to complement regular expressions, of first
converting the given expression into a nondeterministic finite automaton, de-
terminizing, complementing the resulting deterministic finite automaton, and
converting back to a regular expression gives a doubly exponential upper bound

of 22O(n)

. The authors of [5] also gave a lower bound of 2Ω(n), and stated as an
open problem to find tight bounds. A doubly-exponential lower bound was found
in [8], for alphabets of size at least four. Their witness language is a 4-symbol
encoding of the set of walks in an n-vertex complete digraph. They gave a very
short regular expression describing the complement of the encoded set, and pro-
vided a direct and technical proof showing that the encoded language requires
large regular expressions, carefully adapting the approach originally taken by
Ehrenfeucht and Zeiger [4]. Resulting from an independent approach pursued by

the authors, in [9] a roughly doubly-exponential lower bound of 22O(
√

n log n)

was
given for the binary alphabet.

Now it appears tempting to encode the language from [8] using a star-height-
preserving morphism to further reduce the alphabet size, as done in [9] for a
similar problem. Unfortunately, the proof from [8] does not offer any clue about
the star height of the witness language, and thus we cannot mix these proof
techniques. At least, it is known [2] that the preimage of the encoded language
has large star height:

Theorem 4 (Cohen). Let Jn be the complete digraph on n vertices with self-
loops, where each edge (i, j) carries a unique label aij. Let Wn denote the set
of all walks ai0i1ai1i2 · · · air−2ir−1

air−1ir
in Jn, including the empty walk ε. Then

the star height of language Wn equals n.

To obtain a tight lower bound for binary alphabets, here we use a similar
encoding as in [8], but make sure that the encoding is a star-height-preserving
morphism. Here a morphism ρ preserves star height, if the star height of each
regular language L equals the star height of the homomorphic image ρ(L). The
existence of such encodings was already conjectured in [3]. A full characterization
of star-height-preserving morphisms was established later in [14], which reads as
follows:

Theorem 5 (Hashiguchi/Honda). A morphism ρ : Γ ∗ → Σ∗ preserves star
height if and only if (1) ρ is injective, (2) ρ is both prefix-free and suffix-free,
that is, no word in ρ(Γ ) is prefix or suffix of another word in ρ(Γ ), and (3) ρ



has the non-crossing property, that is, for all v, w ∈ ρ(Γ ) holds: If v can be
decomposed as v = v1v2, with v1, v2 6= ε, and w as w = w1w2, with w1, w2 6= ε,
such that both cross-wise concatenations v1w2 and w1v2 are again in ρ(Γ ), then
this implies v1 = w1 or v2 = w2.

Observe that the given lower bound matches the aforementioned upper bound
on the problem under consideration.

Theorem 6. There exists an infinite family of languages Ln over a binary al-

phabet Σ with alph(Ln) = O(n), such that alph(Σ∗ \ Ln) = 22Ω(n)

.

Proof. We will first prove the theorem for alphabet size 3, and then use a
star-height-preserving morphism to further reduce the alphabet size to binary.
Let W2n be the set of walks in a complete 2n-vertex digraph as defined in The-
orem 4. Let E = { aij | 0 ≤ i, j ≤ 2n − 1 } denote the edge set of this graph, and
let Σ = {0, 1, $}.

Now define the morphism ρ : E∗ → Σ∗ by ρ(aij) = bin(i) · bin(j) · bin(i) ·
bin(j)$, where bin(i) denotes the usual n-bit binary encoding of the number i.
To see that ρ is star-height-preserving, one has to verify the properties of Theo-
rem 5, which is an easy exercise. Our witness language for ternary alphabets is
the complement of the set Ln = ρ(W2n). To establish the theorem for ternary
alphabets, we give a regular expression of size O(n) describing the complement

of Ln; a lower bound of 22Ω(n)

then immediately follows from Theorems 1 and 4
since the morphism ρ preserves star height. As for the witness language given
in [8], our expression is a union of some local consistency tests: Every nonempty
word in Ln falls apart into blocks of binary digits of each of length 4n, separated
by occurrences of the symbol $, and takes the form

(bin(i0) bin(i1))
2$ (bin(i1) bin(i2))

2
$ · · · $(bin(ir−1) bin(ir))

2$.

Thus, word w is not in Ln if and only if we have at least one of the following
cases: (i) The word w has no prefix in {0, 1}4n$, or w contains an occurrence
of $ not immediately followed by a word in {0, 1}4n$; (ii) the region around the
boundary of some pair of adjacent blocks in w is not of the form bin(i)$ bin(i);
or (iii) some block does not contain the pattern (bin(i) bin(j))2, in the sense that
inside the block some pair of bits at distance 2n does not match. It is not hard
to encode these conditions into a regular expression of size O(n).

To further decrease the alphabet size to binary, we use the star height-
preserving morphism σ = {0 7→ a1b3, 1 7→ a2b2, $ 7→ a3b1}, which already proved
useful in [9]. Then σ(Ln) has star height 2n and thus again has alphabetic width

at least 22Ω(n)

. For an upper bound on the alphabetic width of its complement,
note first that every word w that is in σ(Σ∗) but not in σ(Ln) matches the
morphic image under σ of the expression rn given above; and σ(rn) still has
alphabetic width O(n). The words in the complement of σ(Ln) not covered by
the expression σ(rn) are precisely those not in σ({0, 1, $}∗), and the complement
of the latter set can be described by a regular expression of constant size. The
union of these two expressions gives a regular expression of size O(n) as desired.

⊓⊔



3.3 Regular Expressions with Intersection and Interleaving

It is known that extending the syntax with an intersection operator can provide
an exponential gain in succinctness over nondeterministic finite automata. For
instance, in [6] it is shown that the set of palindromes of length n can be de-
scribed by regular expressions with intersection of size O(n). On the other hand,
it is well known that the number of states of a nondeterministic finite automaton
accepting Pn has Ω(2n) states [19]. Of course, it appears more natural to com-
pare the gain in succinctness of such extended regular expressions to ordinary

regular expressions rather than to finite automata. There a 22O(n)

doubly expo-
nential upper bound readily follows by combining standard constructions [7]. Yet

a roughly doubly-exponential lower bound of 22Ω(
√

n)

, for alphabets of growing
size, was found only recently in [8], and a follow-up paper [7] shows that this
can be reached already for binary alphabets. Here we finally establish a tight
doubly-exponential lower bound, which even holds for binary alphabets.

Theorem 7. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with intersection of size O(n), such that

alph(Ln) = 22Ω(n)

.

Proof. First, we show that the set of walks W2n ⊆ E∗ defined in Theorem 4
allows a compact representation using regular expressions with intersection. First
we define M = { ai,j · aj,k | 0 ≤ i, j, k ≤ 2n − 1 } and then observe that the set
Even of all nonempty walks of even length, i.e., total number of seen edges,
in the graph Jn can be written as Even = M∗ ∩ (E · M∗ · E), while the the
set Odd of all nonempty walks of odd length is Odd = (E · M∗) ∩ (M∗ · E).
Thus, we have W2n = Even∪Odd∪{ε}. This way of describing W2n appears to
be a long shot from our goal; it uses a large alphabet and does not even reach
a linear-exponential gain in succinctness over ordinary regular expressions—a
similar statement appears, already over thirty years ago, in [4]. In order to get
the desired result, we present a binary encoding τ that preserves star height and
allows a representation of the encoded sets τ(M) and τ(E) by regular expressions
with intersection each of size O(n). Let τ : E∗ → {0, 1}∗ be the morphism defined
by τ(ai,j) = bin(i) · bin(j) · bin(j)R · bin(i)R, for 0 ≤ i, j ≤ 2n−1. To see that τ

preserves star height, we have to check the properties given in Theorem 5, which
is an easy exercise. Thus, by Theorems 1 and 4, the set τ(W2n) has alphabetic

width at least 22Ω(n)

.
It remains to give expressions with intersection of size O(n) for the set τ(W2n).

Since τ(W2n) = τ(Even)∪ τ(Odd)∪{ε}, the morphism commutes with concate-
nation, union, and Kleene star, and, being injective, also with intersection, it
suffices to give regular expressions with intersection for τ(E) and τ(M) of size
O(n). To this end, we we make use of an observation from [6], namely that the
sets of palindromes of length 2m admit regular expressions with intersection of
size O(m). A straightforward extension of that idea gives a size O(m+n) regular
expression with intersection for Sm,n = { vwvR ∈ {0, 1}∗ | |v| = m, |w| = n },
where m and n are fixed nonnegative integers.



Finally, observe that the set τ(E) = {wwR ∈ {0, 1}∗ | |w| = 2n } is equal
to Sn,0 and that the set τ(M) can be written as {uvvRuRvwwRvR | |u| =
|v| = |w| = n }, or {0, 1}2n · Sn,n · {0, 1}3n ∩ τ(E) · τ(E). The latter set can be
described by a regular expression with intersection of size O(n) again, and the
proof is complete. ⊓⊔

The interleaving of languages is another basic language operation known to
preserve regularity. Regular expressions extended with interleaving were first
studied in [17], with focus on the computational complexity of word prob-
lems. They also showed that regular expressions extended with an interleaving
operator can be exponentially more succinct than nondeterministic finite au-
tomata [17]. Very recently, it was shown in [7] that regular expressions with
interleaving can be roughly doubly-exponentially more succinct than regular
expressions: converting such expressions into ordinary regular expressions can

cause a blow-up in required expression size of 22Ω(
√

n)

, for constant alphabet

size. This bound is close to an easy upper bound of 22O(n)

that follows from
standard constructions, see, e.g., [7] for details. If we take alphabets of growing
size into account, the lower bound can be increased to match this trivial upper
bound. The language witnessing that bound is in fact of very simple structure.

Theorem 8. There is an infinite family of languages Ln over an alphabet of
size O(n) having regular expressions with interleaving of size O(n), such that

alph(Ln) = 22Ω(n)

.

Proof. We consider the language Ln described by the shuffle regular expression

rn = (a1b1)
∗
x (a2b2)

∗
x · · · x (anbn)∗

of size O(n) over the alphabet Γ = {a1, a2, . . . , an, b1, b2, . . . , bn}. To give a
lower bound on the alphabetic width of Ln, we estimate first the star height
of Ln. The language Ln can be accepted by a 2n-state partial bideterministic
finite automaton A = (Q,Σ, δ, q0, F ), whose underlying digraph forms a sym-
metric n-dimensional hypercube: The set of states is Q = {0, 1}n, the state
q0 = 0n is the initial state, and is also the only final state, i.e., F = {0n}. For
1 ≤ i ≤ n, the partial transition function δ is specified by δ(p, ai) = q and
δ(q, bi) = p, for all pairs of states (p, q) of the form (x0y, x1y) with x ∈ {0, 1}i−1

and y ∈ {0, 1}n−i. It can be readily verified that this partial deterministic finite
automaton is reduced and bideterministic. Therefore, the star height of Ln coin-
cides with the cycle rank of the n-dimensional symmetric Cartesian hypercube.
For a symmetric graph G, the cycle rank of G coincides with its (undirected)
elimination tree height, which is in turn bounded below by the (undirected)
pathwidth of G. Many structural properties of the n-dimensional hypercube are
known, and among these is the recently established fact [1] that its pathwidth

equals
∑n−1

i=0

(

i
⌈i/2⌉

)

= Θ(2n−1/2 log n), where the latter estimate uses Stirling’s

approximation. Using Theorem 1, we obtain alph(Ln) = 2Ω(2n−1/2 log n) = 22Ω(n)

,
as desired. ⊓⊔



For a similar result using binary alphabets, we will encode the above wit-
ness language in binary using a star-height-preserving morphism. Some extra
care has to be taken, however. The ideal situation one might hope for is to
find for each Γ = {a1, a2, . . . , an} a suitable star-height-preserving morphism
ρ : Γ ∗ → {0, 1}∗ such that ρ(x x y) = ρ(x) x ρ(y), for all x, y ∈ Γ ∗. This
aim however appears to be a bit too ambitious. In all cases we have tried, the
right-hand side of the above equation can contain words which are not even
valid codewords. In [7] this difficulty is avoided altogether by simulating regular
expressions with intersection by those with interleaving, using a trick from [17].
The drawback here is that the simulation takes place at the expense of introduc-
ing an extra symbol and polynomially increased size of the resulting expression
with interleaving. To overcome this difficulty, Warmuth and Haussler devised a
particular encoding [20], which they called shuffle resistant, that has the above
property once we restrict our attention to codewords. Inspired by a property of
this encoding proved later by Mayer and Stockmeyer [17, Prop. 3.1], we are led
to define in general a shuffle resistant encoding as follows:

Definition 9. An injective morphism ρ : Γ ∗ → Σ∗, for some alphabets Γ

and Σ, is shuffle resistant if ρ(L(r)) = L(ρ(r)) ∩ ρ(Γ )∗, for each regular ex-
pression r with interleaving over Γ .

The following is proved in [17, Prop. 3.1] for the encoding proposed by War-
muth and Haussler in [20]:

Theorem 10. Let Γ = {a1, a2, . . . , an} and Σ = {a, b}. The morphism ρ :
Γ ∗ → Σ∗, which maps ai to ai+1bi is shuffle resistant.

Incidentally, this encoding also preserves star height. The drawback is, how-
ever, that alph(h(r)) = Θ(|Σ| alph(r)), for r a regular expression with interleav-
ing. We now present a general family of more economic encodings, into alphabets
of size at least 3, that enjoy similar properties.

Theorem 11. Let Γ and Σ be two alphabets, and $ be a symbol not in Σ. If
ρ : Γ ∗ → (Σ ∪ {$})∗ is an injective morphism with ρ(Γ ) ⊆ Σk$, for some
integer k, then ρ is shuffle resistant.

Proof. We need to show that for each such morphism ρ, the equality ρ(L(r)) =
L(ρ(r)) ∩ ρ(Γ )∗ holds for all regular expressions r with interleaving over Γ .
The outline of the proof is roughly the same as the proof for Theorem 10 as
sketched in [17]. The proof is by induction on the operator structure of r, using
the stronger inductive hypothesis that

L(ρ(r)) ⊆ ρ(L(r)) ∪ E, with E = (ρ(Γ ))∗Σ≥k+1(Σ ∪ $)∗ (1)

Roughly speaking, the “error language” E specifies that the first error occurring
in a word in L(ρ(r)) but not in (ρ(Γ ))∗ must consist in a sequence of too many
consecutive symbols from Σ.



The base cases are easily established, and also the induction step is easy for
the regular operators concatenation, union, and Kleene star. The more difficult
part is to show that if two expressions r1 and r2 satisfy Equation (1), then this
also holds for r = r1 x r2. To prove this implication, it suffices to show the
following claim:

Claim 12. For all words u, v in ρ(Γ )∗∪E and for each word z in u x v the follow-
ing holds: If both z ∈ (Σk$)∗ and u, v ∈ ρ(Γ )∗, then z ∈ ρ

(

ρ−1(u) x ρ−1(v)
)

.
Otherwise, z ∈ E.

Proof. We prove the claim by induction on the length of z. The base case with
|z| = 0 is clear. For the induction step, assume |z| > 0 and consider the prefix
y consisting of the first k + 1 letters of z. Such a prefix always exists if z is
obtained from shuffling two nonempty words from ρ(Γ )∗∪E. The cases where u

or v is empty are trivial. Observe first that it is impossible to obtain a prefix
in Σ<k$ by shuffling two prefixes u′ and v′ of the words u and v. Also, a prefix
in Σ>k always completes to a word z ∈ E. It remains to consider the case z

has a prefix y in Σk$. To obtain such a prefix, two prefixes u′ and v′ have to
be shuffled, with (u′, v′) ∈ (Σj) × (Σk−j$) or (u′, v′) ∈ (Σj$) × (Σk−j). But
since these are prefixes of words in ρ(Γ )∗ ∪ E, the index j can take on only the
values j = 0 and j = k. Thus, if y ∈ Σk$, then y is indeed in ρ(Γ ), and y is
obtained by observing exclusively the first k + 1 letters of u, or exclusively the
first k +1 letters of v. Hence at least one of the subcases y−1z ∈ (y−1u) x v and
y−1z ∈ u x (y−1v) holds. We only consider the first subcase, for the second one
a symmetric argument applies.

It is not hard to see that we can apply the induction hypothesis to this
subcase: Because y ∈ ρ(Γ ) and u ∈ ρ(Γ )∗ ∪ E, the word y−1u is again in
the set ρ(Γ )∗ ∪ E. Having furthermore |y−1z| < |z|, the induction hypothesis
readily implies that claimed statement also holds for the word z = y(y−1z). This
completes the proof of the claim. ⊓⊔

Having established the claim, completing the proof of the statement L(ρ(r)) ⊆
ρ(L(r)) ∪ E is a rather easy exercise. ⊓⊔

The existence of economic shuffle resistant binary encodings that furthermore
preserve star height is given by the next theorem—we omit the proof because of
limited space.

Theorem 13. Let Γ be an alphabet. There exists a morphism ρ : Γ ∗ → {0, 1}∗

such that (1) |ρ(a)| = O(log |Γ |), for every symbol a ∈ Γ , and (2) the morphism ρ

is shuffle resistant and preserves star height. ⊓⊔

For regular expressions with interleaving we show that the conversion to

ordinary regular expressions induces a 22Ω(n/ log n)

lower bound for binary input
alphabet.

Theorem 14. There is an infinite family of languages Ln over a binary al-
phabet admitting regular expressions with interleaving of size O(n), such that

alph(Ln) = 22Ω(n/ log n)

.



Proof. Our witness language will be described by the expression

ρ(rn) = (ρ(a1)ρ(b1))
∗
x (ρ(a2)ρ(b2))

∗
x · · · x (ρ(an)ρ(bn))∗,

obtained by applying the morphism ρ from Theorem 13 to the expression rn

used in the proof of Theorem 8. This expression has size O(n log n), and to
prove the theorem, it will suffice to establish that L(ρ(rn)) has alphabetic width

at least 22Ω(n)

.
Recall from the proof of Theorem 8 that the star height of L(rn) is bounded

below by 2Ω(n). Since ρ preserves star height, the same bound applies to the
language ρ(L(rn)). By Theorem 1, we thus have

alph(ρ(L(rn))) = 22Ω(n)

. (2)

Unfortunately, this bound applies to ρ(L(rn)) rather than to L(ρ(rn)). At least,
as we know from Theorem 13 that ρ is a shuffle resistant encoding, these two
sets are related by

L(ρ(rn)) ∩ ρ(Γ )∗ = ρ(L(rn)), (3)

with Γ = {a1, b1, . . . , an, bn}.
To derive a similar lower bound on the language L(ρ(rn)), we use the up-

per bound 2O(n(1+log m)) from [11] on the alphabetic width of the intersection
for regular languages of alphabet width m and n, respectively, for m ≥ n. To
this end, let α(n) denote the alphabetic width of L(ρ(rn)). We show first that
α(n) > alph(ρ(Γ )∗). Assume the contrary. By Theorem 13, the set ρ(Γ )∗ ad-
mits a regular expression of size O(n log n). Assuming α(n) ≤ alph(ρ(Γ )∗), the
upper bound on the alphabetic width of intersection implies that ρ(L(rn)) =

L(ρ(rn))∩ ρ(Γ ∗) admits a regular expression of size 2O(n log2 n). But this clearly
contradicts Inequality (2). Thus, α(n) > alph(ρ(Γ )∗). Applying the upper bound
for intersection to the left-hand side of Equation (3), we obtain

alph(ρ(L(rn))) = alph(L(ρ(rn)) ∩ ρ(Γ ∗)) = 2O(n log n log α(n)). (4)

Inequalities (2) and (4) now together imply that there exist positive constants c1

and c2 such that, for n large enough, holds 22c1n

≤ 2c2n log n log α(n). Taking dou-
ble logarithms on both sides and rearranging terms, we obtain c1n−O(log n) ≤
log log α(n). Since the the left-hand side is in Ω(n), we thus have alph(L(ρ(rn))) =

α(n) = 22Ω(n)

, and the proof is complete. ⊓⊔
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