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Abstract. We study the problem of finding good elimination orderings
for the state elimination algorithm, which is one of the most popular
algorithms for the conversion of finite automata into equivalent reg-
ular expressions. Based on graph separator techniques we are able to
describe elimination strategies that remove states in large induced sub-
graphs that are “simple” like, e.g., independent sets or subgraphs of
bounded treewidth, of the underlying automaton, that lead to regular
expressions of moderate size. In particular, we show that there is an
elimination ordering such that every language over a binary alphabet
accepted by an n-state deterministic finite automaton has alphabetic
width at most O(1.742n), which is, to our knowledge, the algorithm
with currently the best known performance guarantee. Finally, we apply
our technique to the question on the effect of language operations on
regular expression size. In case of the intersection operation we prove an
upper bound which matches, up to a small factor, a lower bound recently
obtained in [9, 10], and thus settles an open problem stated in [7].

1 Introduction

One of the most basic theorems in formal language theory is that every regular
expression can be effectively converted into an equivalent finite automaton, and
vice versa [14], and algorithms accomplishing these tasks have been known since
the beginning of automata theory, see, e.g., [17]. While regular expressions can
be converted efficiently into nondeterministic finite automata, the other direction
necessarily leads to an exponential blow-up in size [6]. Some very recent results
on this problem imply an increase of 2Ω(n) in size, even given a deterministic
finite automaton over a binary alphabet [9–11]. In spite of these strong negative
results, already early authors noticed that, at least in many cases, it may be
possible to improve the standard state elimination algorithm: The authors of
the seminal work [17] noticed that the ordering in which the states of the given
automaton are processed can greatly influence the size of the resulting regular
expression, and an implementation study appearing in the 1960s notes [16]:



“. . . a basic fault of the method is that it generates such cumbersome
and so numerous expressions initially.” . . .

But only the last few years have seen a renewed interest in heuristic algorithms
that produce, at least in some cases, shorter regular expressions than the stan-
dard, non-optimized textbook procedure, see, e.g., [3, 7, 12, 18]. However, none
of the mentioned algorithms is known to have a better performance guarantee
than O(4n) in the worst case, which is (roughly) the guarantee of the standard
textbook algorithms. It is worth mentioning that in [7] a recursive algorithm for
converting planar n-state finite automata into regular expressions with a non-
trivial performance guarantee of 2O(

√
n) was presented. As proved in [10], this

bound is asymptotically optimal for the planar case. The mentioned algorithm
exploits the separator theorem for planar graphs [15]. This was the starting point
of our investigations.

The main idea underlying the graph separator technique is to identify large
induced substructures that are “simple” that lead to regular expressions of mod-
erate size or alphabetic width. Such a procedure is seemingly more difficult to
implement than a mere state elimination strategy, but we will show how the idea
of using separators can be generalized and implemented simply in a divide-and-
conquer fashion. The difficulty when applying this idea is that on the one hand
large or omnipresent substructures are needed, such that the algorithm can be
applied successfully, and on the other hand, these substructures have to produce
small regular expressions. These two conditions seem to clash at first thought.
Nevertheless, we present two algorithms, one that uses independent sets, the
other one induced subgraphs of bounded undirected treewidth, as basic building
blocks for a strategy computing a good ordering on the states for the state elim-
ination scheme. Both algorithms when applied to an n-state deterministic finite
automata attain regular expressions with a performance guarantee of O(cn), for
constants c < 2.602 and c < 1.742, respectively. As a side result, we identify a
structural restriction, namely bounded treewidth, on the transition structure of
the given finite automata that guarantees a polynomial upper bound on the re-
sulting regular expression. These new insights on the conversion problem can be
applied to some questions regarding the effect of language operations on regular
expression size, too. Namely, we present a new algorithm computing a regular
expression denoting the intersection of two regular languages. The performance
guarantee is proved to be 2O(n log m

n ), where m and n ≤ m are sizes of the given
regular expressions. This matches, up to a small factor,1 a lower bound of 2Ω(n)

recently established in [10]. We thus settle a question stated in [7] and com-
plement previous lower bounds from [8–10]. We also prove a nontrivial upper
bound for the alphabetic width of the language operation of half-removal, whose
descriptional complexity in terms of finite automata was studied recently in [4].

1 For example, assuming that storing a regular expression of alphabetic width k takes k
bytes, and the larger expression is stored in an enormous plain text file taking
1MByte = 210 KByte disk space, while the smaller one needs only 1 KByte, we
still have log m

n
= 10.



2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [21].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the
alphabet Σ, including the empty word ε. The length of a word w is denoted
by |w|, where |ε| = 0.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }, where δ is naturally extended to a
function Q × Σ∗ → 2Q. A NFA A = (Q,Σ, δ,Q0, F ) is deterministic, for short
a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In this case we simply write
δ(q, a) = p instead of δ(q, a) = {p}. Two finite automata are equivalent if they
accept the same language. Without loss of generality we assume throughout this
paper, that every finite automaton accepting a nonempty language has useful
states only, i.e., every state is accessible from the initial state and co-accessible
from some accepting state—this assumption is compatible with the definition of
deterministic finite automata given above.

It is well known that finite automata and regular expressions are equally
powerful, i.e., for every finite automaton on can construct an equivalent regular
expression. Let Σ be an alphabet. The regular expressions over Σ are defined
recursively in the usual way:2 ∅, ε, and every letter a with a ∈ Σ is a regular
expression, and if r1 and r2 are regular expressions, then (r1 + r2), (r1 · r2),
and (r1)∗ are also regular expressions. The language defined by a regular expres-
sion r, denoted by L(r), is defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a},
L(r1 + r2) = L(r1) ∪ L(r2), L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. The
size or alphabetic width of a regular expression r over the alphabet Σ, denoted
by alph(r), is defined as the total number of occurrences of alphabet symbols
of Σ in r. For a regular language L, we define its alphabetic width, alph(L), as
the minimum alphabetic width among all regular expressions describing L. As
with finite automata, the notion of equivalence is defined based on equality of
the described language.

In the remainder of this section we fix some basic notations from graph theory.
A directed graph, or digraph, G = (V,E) consists of a finite set of vertices V with
an associated set E ⊆ V × V of edges. If the edge relation E is symmetric, the
digraph is said to be symmetric. Intuitively, a symmetric digraph is obtained by
forgetting the orientation of the original edges in G. A digraph H = (U,F ) is
a subdigraph, or simply subgraph, of a digraph G = (V,E), if U ⊆ V and for
each edge (u, v) ∈ F with u, v ∈ U , the pair (u, v) is an edge in E. For a subset
U ⊆ V , the subgraph induced by U is the subgraph G[U ] = (U,E ∩ (U × U)).
2 For convenience, parentheses in regular expressions are sometimes omitted and the

concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: Concatenation is performed before union, and star before both
product and union.



Finally, a hammock is a digraph G = (V,E) having two distinguished ver-
tices s and t satisfying the properties (1) that the indegree of s and the outdegree
of t is zero, and (2) for every vertex v in G, there is both a path from s to v
and a path from v to t. Here s is referred to as the start vertex and t as the
terminal vertex of the hammock G. The remaining set of vertices Q = V \ {s, t}
is called the set of internal vertices. It is thus convenient to specify a hammock
as a 4-tuple H = (Q,E, s, t). With the finite automaton A = (Q,Σ, δ, q0, F ) we
naturally associate a hammock H(A) = (Q,E, s, t), where s and t are designated
vertices not appearing in Q that play the role of the initial and a single final state,
and E = {(s, q0)}∪{ (q, t) | q ∈ F }∪{ (p, q) ∈ Q2 | q ∈ δ(p, a), for some a ∈ Σ }.
Due to the “dualism” of computations in A and walks in H(A) one can recon-
struct the language accepted by A from the walks in H(A)—a walk in H(A) is a
(possibly empty) sequence of edges along a path, with repeated edges allowed. To
this end define the substitution σ : E → Σ∗ by (p, q) 7→ { a ∈ Σ | q ∈ δ(p, a) },
if p, q ∈ Q, (s, q0) 7→ {ε}, and (q, t) 7→ {ε}, for q ∈ F , which naturally extends
to words and languages over E. It is easy to see that L(A) = σ(LQ

st); here LZ
xy,

for x, y ∈ Q ∪ {s, t} and Z ⊆ Q, refers to the set of all walks in H(A) from
vertex x to vertex y whose internal vertices are all in Z—the internal vertices of
a walk denote those that are visited by the walk after the leaving x and before
entering y. This notion naturally extends to LZ

XY for sets X, Y ⊆ Q∪ {s, t} and
Z ⊆ Q. The above definitions are particularly useful in connection with regular
expressions because of the following well-known fact (see also [21]).

Lemma 1. Let Γ and Σ be finite alphabets and r be a regular expression over Γ .
Moreover, let ρ : Γ → 2Σ∗

be a regular substitution, i.e., a substitution satisfying
ρ(a) = L(ra), for some regular expression ra, for each a ∈ Γ . Then a regular
expression describing ρ(L(r)) is obtained from r by substituting ra for each letter
a ∈ Σ. ut

Thus, it suffices to describe the conversion to regular expressions from finite
automata on the basis of the associated digraphs, which we will do in the forth-
coming. Because our proofs and algorithmic ideas are mainly drawn from graph
theory, this proves to be notationally more convenient.

3 Choosing a Good Elimination Ordering for the State
Elimination Technique

The state elimination technique is an optimized version of the McNaughton-
Yamada algorithm, avoiding the unnecessary computation of subexpressions. A
detailed description of the state elimination algorithm can be found in [21]. Here
we only introduce the necessary background and notations. For the hammock
H(A) = (Q,E, s, t) that is associated to a finite automaton A = (Q,Σ, δ, q0, F )
both algorithms compute regular expressions rS

jk from the regular expression
matrix RS = (rS

jk)j,k∈Q∪{s,t} satisfying L(rS
jk) = LS

jk, for every j, k ∈ Q ∪ {s, t}
and a fixed ordering S ⊆ Q; it is convenient to write a total order on a fi-
nite set as a word, where the relative positions of the letters specify the order.



Since any path from vertex j to k whose internal vertices are in S ∪ {i} can
be written as L

S∪{i}
jk = LS

jk + LS
ji · (LS

ii)
∗ · LS

ik, we are led to define the identity
rS·i
jk = rS

jk+rS
ji ·(rS

ii)
∗ ·rS

ik on regular expressions, for every j, k ∈ Q∪{s, t} and S ·i
prefix of the ordered set Q, which is the basic recurrence of both algorithms. Af-
ter applying these rules for all pairs (j, k) with j, k 6= i for an inner vertex i it
becomes isolated and thus can safely be eliminated. This explains the term state
elimination algorithm, because during the computation of the expressions rS

jk

we are led to the hammock HS(A) = (Q \ S, ES , s, t), with ES = { (j, k) |
there is a path from vertex j to k in H(A) with internal vertices from S }. Ob-
serve that the choice of the elimination order on Q can greatly influence the
size of the resulting regular expression rQ

st. A further slight enhancement on the
algorithm concerns the usage of the similarity relation.3 With a straightforward
implementation one can ensure that rS

jk = ∅ if and only if LS
jk = ∅.

The size of the regular expression resulting from applying the McNaughton-
Yamada algorithm has been analyzed in [7]. There it was shown that the algo-
rithm produces a regular expression of alphabetic width at most |Σ| ·n ·4n. Here,
state elimination is better by a factor of n, paradoxically because we enlarged
the automaton, in adding an (n + 1)th state as single final state.

Theorem 2. Let A be an n-state finite automaton. Then the state elimination
algorithm produces for any ordering on the states a regular expression describ-
ing L(A) of alphabetic width at most |Σ| · 4n. ut

Previous accounts on choosing elimination orderings can be naturally put
into two groups: In the first group, we find algorithms that have a tail-recursive
specification, and are most easily implemented by an iterative program [3, 6,
7, 11, 17, 18], the others are based on the divide-and conquer paradigm [7, 12],
suggesting a recursive implementation. We present a lemma that proves useful for
designing algorithms in both groups. The lemma gives rise to two algorithms for
choosing good elimination orderings yielding nontrivial performance guarantees
for deterministic finite automata, one of which gives polynomial-size regular
expressions for a restricted yet large class of finite automata.

3.1 The Main Lemma

As before, for a finite automaton A, let H(A) = (Q,E, s, t) be the hammock
associated with A, and let S denote a subset of Q. We begin with an obser-
vation on the expressions rS

jk resulting from eliminating S in case the induced
subgraph H[S] falls apart into mutually disjoint components.
3 Two regular expressions r and s are called similar, in symbols r ∼= s, if r and s can

be transformed into each other by repeatedly applying one of the following rules to
their subexpressions: (1) r + r ∼= r, (2) (r + s) + t ∼= r + (s + t), (3) r + s ∼= s + r, (4)
r + ∅ ∼= r ∼= ∅+ r, (5) r · ∅ ∼= ∅ ∼= ∅ · r, (6) r · ε ∼= r ∼= ε · r, and (7) ∅∗ ∼= ε ∼= ε∗. The
first three rules above define the notion of similarity introduced by Brzozowski [1],
and the remaining three have been added because of their usefulness in the context
of converting regular expressions into finite automata.



Lemma 3. Let H = (Q,E, s, t) be a hammock. Assume S ⊆ Q can be parti-
tioned into two sets T1 and T2 such that the induced subgraph H[S] falls apart
into mutually disconnected components H[T1] and H[T2]. Let j and k be vertices
with j, k ∈ (Q \ (T1 ∪ T2)) ∪ {s, t}. Then for the expression obtained by elimina-
tion of the the vertices in T1 followed by elimination of the vertices in T2 holds
rT1·T2
jk

∼= rT1
jk + rT2

jk .

Proof. We prove the statement by induction on |T1| + |T2|. The induction is
rooted at |T1| + |T2| = 0. For the case T2 is empty, we have in general rT1T2

jk =
rT1
jk

∼= rT1
jk + rε

jk, as desired. For the induction step, let |T1| + |T2| = n, with
T2 6= ∅. Let t be the last element in T2, that is, T2 = Tt for some prefix T of T2.
Then rT1T2

jk
∼= rT1T

jk + rT1T
jt · (rT1T

tt )∗ · rT1T
tk . Since |T1|+ |T | = n−1, for the first of

the four subexpressions on the right-hand side the induction hypothesis applies:
rT1T
jk

∼= rT1
jk + rT

jk. For the last three subexpressions, we claim that rT1T
jt

∼= rT
jt,

as well as (rT1T
tt )∗ ∼= (rT

tt)
∗, and rT1T

tk = rT
tk. We only prove the first congruence,

the others are dealt with in a similar manner. It suffices to prove rT1
jt

∼= rε
jt,

since the both sides of the former congruence are obtained from the latter by
eliminating T , and state elimination preserves similarity of expressions. If there
is an edge (j, t) ∈ E, then it is already described by rε

jt. It only remains to
show that no further words are introduced by eliminating T1. So we may as well
assume that (j, t) /∈ E and prove the congruence for this case. This can be done
as follows: Consider the subgraph H[S]. By assumption of the lemma, t ∈ T2 is
not reachable from any vertex in T1, thus no walk from j to t can visit a vertex
in T1, and since there is no direct connection from j to t, the language LT1

jt is
empty. Every regular expression describing the empty set is similar to ∅, hence
rT1
jt
∼= ∅, provided (j, t) /∈ E. This completes the proof of the congruence for this

subexpression. Plugging in the four subexpression congruences we just found
that rT1T2

jk
∼= rT1

jk + rT
jk + rT

jt(r
T
tt)

∗rT
tk = rT1

jk + rT2
jk . ut

3.2 Eliminating Independent Sets

The following theorem shows that eliminating an independent set from the ver-
tex set before eliminating the remaining vertices produces intermediate regular
expressions which are short and easy to understand.

Lemma 4. Let H = (Q,E, s, t) be a hammock. Assume I ⊆ Q is an independent
set in H. Let j and k be vertices with j, k ∈ (Q\I)∪{s, t}. Then for the regular ex-
pression rI

jk obtained after elimination of I holds rI
jk
∼= rε

jk +
∑

i∈I rε
ji · (rε

ii)
∗ · rε

ik.

Proof. By induction on |I|, making repeated use of Lemma 3: The statement
holds true in the case |I| = 1. For |I| > 1, in the notation of Lemma 3, set
S = I, let t be the last element in I, and assume that T is a suitable prefix such
that I = Tt. Then H[I] falls apart into mutually disjoint components H[T ] and
H[{t}]. Thus, Lemma 3 is applicable, and rI

jk
∼= rT

jk + rt
jk = rT

jk + rε
jk + rε

jt ·
(rε

tt)
∗ · rε

tk. By induction hypothesis, rT
jk
∼= rε

jk +
∑

i∈T rε
ji · (rε

ii)
∗ · rε

ik . Since the
notion of similarity allows to suppress the multiple appearance of rε

jk in a sum



of subexpressions, the expression rT
jk + rε

jk + rε
jt · (rε

tt)
∗ · rε

tk is similar to the right
hand side of the congruence in the statement of the lemma. ut

The next observation is that we can use Lemma 4 repeatedly.

Lemma 5. Let H = (Q,E, s, t) be a hammock, and let S be an ordered subset
of Q Assume I ⊆ Q \ S is an independent set in HS. Let j and k be vertices
with j, k ∈ (Q \ (S ∪ I)) ∪ {s, t}. Then for the regular expression rSI

jk obtained
after elimination of SI holds rSI

jk
∼= rS

jk +
∑

i∈I rS
ji ·

(
rS
ii

)∗ · rS
ik. ut

This gives an algorithm for computing a good elimination ordering as follows:
Choose a large independent set I1 in H = H(A), then choose an independent
set I2 in HI1 , choose an independent set I3 in HI1I2 , and so on. To estimate the
performance of the independent set elimination approach, we have to find a large
independent set Ik+1 in the hammock HI1I2...Ik . The cardinality of the maxi-
mum independent set in some intermediate graph GS obtained after eliminating
S = I1I2 . . . Ik can be estimated using Turán’s Theorem from graph theory [20].
The latter gives an estimate in terms of the average degree of a symmetric di-
graph G = (V,E), the latter being defined as d(G) = |E|/|V |—recall that each
unordered pair {u, v} forming an “undirected edge” is counted as two edges in E.

Theorem 6 (Turán). If G is a symmetric digraph of average degree d with n
vertices, then G has an independent set of size at least n/(d + 1).

In spite of the well known fact that finding a maximum independent set is
computationally hard, the proof of the above theorem implies that such a large
independent set can also be found efficiently using a simple greedy algorithm.
Due to lack of space we have to omit the proof of the following theorem.

Theorem 7. Let A be an n-state deterministic finite automaton with input al-
phabet Σ. Then there exists an ordering on the states such that the state elimina-
tion algorithm produces a regular expression describing L(A) of alphabetic width
at most |Σ| · nO(1) · 4c·n, where c = 2|Σ|·2|Σ|2·2|Σ|4

(2|Σ|+1)(2|Σ|2+1)(2|Σ|4+1) . ut

For the case of a binary alphabet, we have c = 1024
1485 and 4c .= 2.601, thus

giving a worst-case upper bound of, say, O(2.602n). This appears reasonable at
once in presence of a worst-case lower bound of γn for the case of deterministic
finite automata over binary alphabets, proved recently in [10]. Here, γ > 1 is a
fixed constant4 that is independent of n.

4 By tracking the size of the constants used in the chain of reductions used in that
proof, one can deduce a concrete value for the constant γ. For alphabets of size ` ≥ 3,

we get expression size at least 2

√
`(n−1)

3·2·(`+1)2 , for infinitely many values of n. Here we
exploited the fact from spectral graph theory that, using definitions and notation
from [2], for the vertex expansion of `-regular Ramanujan graphs G holds gG ≥
hG ≥ λ1/2 ≥

√
`

2(`+1)
, in particular for ` = 3. Using a binary encoding that increases

the size of the input deterministic finite automaton to m = 10n whilst preserving



3.3 From Automata of Small Treewidth to Regular Expressions

We show that finite automata whose transition structure forms a graph of
bounded undirected treewidth can be converted into regular expressions of poly-
nomial size.

Definition 8. Let G = (V,E) be a digraph, and let S ⊆ V be a set of vertices.
A set of vertices X is a balanced k-way separator for S if the induced subgraph
G[S \X] falls apart into k mutually disjoint subgraphs G[Ti], for 1 ≤ i ≤ k, with
0 ≤ |Ti| ≤ 1

2 |S \X|.

It is known that for digraphs of undirected treewidth w, every nontrivial
subset of the vertex set admits a small balanced k-way separator of size at most
w + 1, for some k [19]. An elementary observation on sums of integers shows
that we can always set k = 3, by grouping the disjoint subgraphs together in a
suitable manner. Together with the mentioned result from [19], we thus have:

Lemma 9. Let G = (V,E) be a digraph of undirected treewidth at most w.
Then for every subset S of V , there exists a balanced 3-way separator of size at
most w + 1. ut

This separation property can be used to convert finite automata of small
undirected treewidth into relatively short regular expressions:

Theorem 10. Let A = (Q,Σ, δ, q0, F ) be an n-state nondeterministic finite au-
tomaton, H its associated hammock, and let w denote the undirected treewidth
of H[Q]. Then the there exists a ordering on the states such that the state elim-
ination algorithm produces a regular expression describing language L(A) of al-
phabetic width at most |Σ| · n2w+2+log 3.

Proof. We devise a recursive algorithm for finding an elimination ordering such
that the size of the resulting regular expression obeys the desired bound as
follows: By Lemma 9 for each set of states S ⊆ Q, we can find a balanced 3-way
separator X, such that |X| ≤ w + 1, and the induced subgraph H[S \ X] falls
apart into three mutually disjoint subgraphs H[Ti], for 1 ≤ i ≤ 3. For each of the
individual sets Ti, Lemma 3 ensures that for every ordering, rT1T2T3

jk
∼=

∑3
i=1 rTi

jk,
for all j, k ∈ (Q\(T1∪T2∪T3))∪{s, t}. Then we recursively compute an ordering
for each Ti, placing a separator for H[Ti] at the end of that ordering, and so on.

Since for each S ⊆ Q the alphabetic width of rS
jk is at most 4|X| ∑3

i=1 alph(rTi

jk),
for some X, T1, T2, and T3 with |X| ≤ w + 1 and |Ti| ≤ 1

2 |S|, for 1 ≤ i ≤ 3.
Moreover, the alphabetic width of the expression rS

jk is bounded above by the
recurrence R(1) ≤ 1 and R(n) ≤ 4w+1 · 3 · R

(
n
2

)
, for n ≥ 2. We obtain

R(n) ≤ 4(w+1) log n3log n. Applying the substitution σ increases the expression
size by a factor of at most |Σ|. Thus we have an expression of alphabetic width
|Σ| · n2w+2+log 3 for the language L(A). ut

star-height, the very same lower bound (but still in terms of n = 1
10

m) is proved
for binary alphabets. Thus we obtain γ

.
= 1.013 for alphabet size at least 3, and

γ
.
= 1.001 for binary alphabets. This estimate is most likely very loose, since the

main goal in in [10] was merely to bound the value of γ away from 1.



3.4 Eliminating Subgraphs of Small Treewidth

Now we present a fusion of our previous ideas: Instead of an independent set, we
look for a large induced subgraph whose structure is “simple” in the sense that
eliminating the states in the subgraph leads to a regular expression of moderate
size. As we have seen in the previous section, one such example are induced
subgraphs of small undirected treewidth. A very recent result states that every
graph with bounded average degree has a large induced subgraph of treewidth
at most two [5]:

Theorem 11. Let G be a connected graph with average degree at most d ≥ 2.
Then there is a polynomial-time algorithm which finds an induced subgraph with
undirected treewidth at most two of size at least 3n

d+1
. ut

This gives rise to an algorithm with improved performance guarantee.

Theorem 12. Let A be an n-state deterministic finite automaton with input
alphabet Σ. Then there exists a ordering on the states such that the state elim-
ination algorithm produces a regular expression describing L(A) of alphabetic
width at most |Σ| · nO(1) · 4c·n, where c = 2|Σ|−2

2|Σ|+1 .

Proof. Let H = H(A) = (Q,E, s, t) be the hammock associated with the au-
tomaton A. Note that the average outdegree of H[Q] is at most |Σ| so the average
degree of its undirected version is at most 2|Σ|. By Theorem 11, we can find a
subset S of Q having size 3n

2|Σ|+1 = (1 − c) · n, for suitably chosen c, such that
the induced subgraph H[S] has undirected treewidth at most 2. The remaining
states in Q \ S are placed at the end of the elimination ordering. We set up a
regular expression matrix (rε

jk)j,k, whose rows j and columns k range over the
set (Q \ S) ∪ {s, t}. The algorithm from the proof of Theorem 10 can be used
to compute an elimination ordering for S such that the set of walks from j to k
using internal states only from H[S] is described by the regular expression rS

jk.
One observes that, since this ordering does not depend on j or k, that the same
result is obtained by eliminating S from the larger graph H by using that very
ordering. As the size of the intermediate expressions after this phase is bounded
by |S|6+log 3, and eliminating the remaining states in Q \ S incurs a blow-up by
a factor of 4c·n, we obtain that the alphabet with of rQ

st is at most nO(1) · 4c·n.
Finally we apply the substitution σ to obtain a regular expression for L(A) that
has alphabetic width at most |Σ| · nO(1) · 4c·n, for c = (2|Σ| − 2)/(2|Σ|+ 1). ut

In the case of a binary input alphabet, we obtain that the maximum blow-up
arising in the conversion from deterministic finite automata to regular expres-
sions is at most nO(1) · 42/5·n, where 42/5 .= 1.741.

4 Language Operations and Regular Expression Size

Studying descriptional complexity of language operations on regular expressions
was first suggested in [7]. Lower bounds for the intersection and shuffle, and



a tight lower bound for complementation were found recently in [8–10]. We
are able to contrast these negative results with a comparable upper bound for
intersection. A similar approach works for the half-removal operation.

Theorem 13. Let L1, L2 ⊆ Σ∗ be regular languages with alphabetic width at
most m and n, respectively. Then alph(L1 ∩ L2) ≤ |Σ| · 2O(1+log m

n )min{m,n}.
Note that this bound is best possible for the case m = Θ(n) and |Σ| = O(1).

Proof. A regular expression of size m can be converted into an equivalent nonde-
terministic finite automaton A with at most m+1 states such that the digraph of
the underlying transition structure has undirected treewidth at most two [13]—
this nondeterministic finite automaton will in general have ε-transitions, but
these do not cause any trouble when we treat them just like normal transitions.
The construction ensures that the transition structure of the that automaton is
a hammock with at most m− 1 internal vertices.

Let A1 and A2 be finite automata thus obtained from suitable regular ex-
pressions of alphabetic width m and n describing the languages L1 and L2,
respectively. Moreover, let Q1 and Q2 denote their respective state sets of A1

and A2, respectively. By applying the standard product construction for the in-
tersection of regular languages, we obtain a nondeterministic finite automaton
A1×A2 with (m+1)(n+1) states accepting the language L1∩L2, by appropri-
ately defining the initial state of A1×A2 and the accepting states of the product
automaton. With G1 and G2 denoting the digraphs underlying each transition
structure of the automata, the digraph underlying A1 × A2 is (a subgraph of)
the categorical product G1 × G2. Let H = H(A1 × A2) denote the hammock
associated with finite automaton A1 × A2, where s and t are the distinguished
vertices of H. The following claim is immediate from the definition of balanced
3-way separators (Definition 8) and the definition of categorical product:

Claim. Let G1 = (V1, E1) and G2 = (V2, E2) be digraphs, and S1 ⊆ V1, S2 ⊆ V2.
Assume X is a balanced separator for S1, such that the digraph G[S1 \ X]
falls apart into the mutually disjoint subgraphs G[Ti], for 1 ≤ i ≤ 3, with
0 ≤ |Ti| ≤ 1

2 |S1 \ X|. Then X × S2 is a balanced 3-way separator for S1 × S2

in the product graph G1 × G2, and the digraph (G1 × G2)[(S1 \ X) × S2] falls
apart into the mutually disjoint subgraphs G[Ti × S2], for 1 ≤ i ≤ 3, with
0 ≤ |Ti × S2| ≤ 1

2 |(S1 \X)× S2|. ut

We proceed in a similar way as in the proof of Theorem 10, by recursively
computing regular expressions rS1×S2

jk for S1 ⊆ Q1, S2 ⊆ Q2 and all j, k ∈
((Q1×Q2) \ (S1×S2))∪{s, t}. This time we always choose a suitable separator
according to the above stated claim. This is done as follows: If |S1| < |S2|,
then exchange the roles of G1 and G2, and of S1 and S2, respectively. This is
admissible by the symmetry of the categorical product. Afterwards, choose a
3-way separator X for G1[S1] of size at most 3—recall that, by Lemma 9 such a
separator exists, since both factor graphs have undirected treewidth at most 2.
Let T1, T2, and T3 be the disjoint subgraphs constituting G1[S1 \ X] as given



by Definition 8. Eliminating (S1 \X)× S2 gives regular expressions r
(S1\X)×S2
jk ,

with j and k ranging over all states not in (S1 \X)× S2.
By the above claim and Lemma 3, we have r

(S1\X)×S2
jk

∼=
∑3

i=1 rTi×S2
jk . To

recursively assign an elimination ordering to each of the subsets Ti × S2, we
find next a balanced 3-way separator for the larger of the two graphs G1[Ti]
and G2[S2], which amounts to a corresponding separator in the product graph
G1×G2[Ti×S2], and recursively proceed to assign elimination orderings to such
subsets until the subset sizes reach the value 1.

In order to get an upper bound on alph(L1 ∩ L2) ≤ alph(rS1×S2
st ), define

A(β, η) = max
S1⊆V1,|S1|≤β
S2⊆V2,|S2|≤η

{ alph(rS1×S2
jk ) | j, k ∈ ((Q1 ×Q2) \ (S1 × S2)) ∪ {s, t} }.

An easy observation is that for the degenerate case, where S1 and S2 have both
at most one element, we have A(1, 1) ≤ 4. An upper bound is obtained thus by
solving the recurrence A(β, η) = A(η, β), if 1 < β < η, A(β, η) = 4, if β = η = 1,
and A(β, η) = 3 ·A

(⌊
β
2

⌋
, η

)
· 43η, otherwise. This leads to the stated bound on

alph(L1 ∩ L2). The analysis of the recurrence is omitted. ut

Basically the same technique can be used for the half-removal operation, de-
fined as 1

2L = {x ∈ Σ∗ | there exists y ∈ Σ∗ with |x| = |y| such that xy ∈ L }.
The state complexity of this operation was studied in [4]. The theorem reads as
follows—due to lack of space we omit the proof.

Theorem 14. Let L ⊆ Σ∗ be a regular language of alphabetic width at most n.
Then alph

(
1
2L

)
≤ |Σ| · 2O(n). ut

Thus, the technique used above is applicable for certain language operations
that can be implemented on nondeterministic finite automata using a special
kind of product construction. But there are also limitations: For instance, the
authors failed to use the above technique to produce a nontrivial upper bound
for the shuffle of two regular languages.
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