
Inapproximability of Nondeterministic State and

Transition Complexity Assuming P 6= NP

Hermann Gruber1 and Markus Holzer2

1 Institut für Informatik, Ludwig-Maximilians-Universität München,
Oettingenstraße 67, D-80538 München, Germany

email: gruberh@tcs.ifi.lmu.de
2 Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany
email: holzer@informatik.tu-muenchen.de

Abstract. Inapproximability results concerning minimization of nonde-
terministic finite automata relative to given deterministic finite automata
were obtained only recently, modulo cryptographic assumptions [4]. Here
we give upper and lower bounds on the approximability of this problem
utilizing only the common assumption P 6= NP, in the setup where the
input is a finite language specified by a truth table. To this end, we derive
an improved inapproximability result for the biclique edge cover prob-
lem. The obtained lower bounds on approximability can be sharpened
in the case where the input is given as a deterministic finite automaton
over a binary alphabet. This settles most of the open problems stated
in [4]. Note that the biclique edge cover problem was recently studied
by the authors as lower bound method for the nondeterministic state
complexity of finite automata [5].

1 Introduction

Finite automata are one of the oldest and most intensely investigated compu-
tational models. As such, they found widespread use in many other different
areas such as circuit design, natural language processing, computational biology,
parallel processing, image compression, to mention a few, see [13] and references
therein. As some of these applications deal with huge masses of data, the amount
of space needed by finite automata is an important research topic.

On the one hand, it is well known that while nondeterministic finite automata
and deterministic finite automata are equal in expressive power, nondetermin-
istic automata can be exponentially more succinct than deterministic ones. On
the other hand, minimizing deterministic finite automata can be carried out effi-
ciently, whereas the state minimization problem for nondeterministic finite state
machines is PSPACE-complete, even if the regular language is specified as a
deterministic finite automaton [8]. This prompted the authors of the aforemen-
tioned paper to ask whether there exist at least polynomial-time approximation
algorithms with a reasonable performance guarantee. However, recent work [4]

shows that this problem cannot be approximated within
√

n
polylog(n) for state mini-

mization and n
polylog(n) for transition minimization, provided some cryptographic

assumption holds. As the result is based on a rather strong assumption, the au-
thors asked for proving approximation hardness results under the weaker (and
more familiar) assumption P 6= NP as an open problem. Moreover, they asked
to determine the approximation complexity when given a regular language spec-
ified by a truth table.

In this paper we solve these open problems. To summarize, we have obtained
the following results on the minimization problems for nondeterministic finite
automata:

– If the input is given as a nondeterministic finite automaton with n states
(transitions, respectively), the state (transition, respectively) minimization
problem is not fixed-parameter tractable (the parameter being the upper
bound on the number of states/transitions to be reached) by Theorem 1,
unless P = PSPACE. Earlier work established that this problem is not
approximable within o(n), provided P = PSPACE [4], and this holds even
for unary input alphabets, unless P = NP [7].

– If the input is given by a truth table specifying a Boolean function of to-
tal size N , the state minimization problem is NP-complete (Theorem 4).
Moreover we establish a lower bound of N1/6−ε on the approximability
both for state and transition minimization, provided P 6= NP (Theorems 7
and 10). These results are nicely contrasted by two simple polynomial-time
algorithms achieving ratios of O(

√
N/ logN) for state minimization, and

O(N/ (log N)2) for the case of transition minimization, respectively (Theo-
rem 5).

– Finally, if the input is given by a deterministic finite automaton, Theo-
rem 1 asserts that the corresponding state and transition minimization prob-
lems become fixed-parameter tractable. But assuming P 6= NP, the state
minimization problem is not approximable within n1/3−ε for alphabets of
size O(n) (Corollary 14), and not approximable within n1/5−ε for a binary
alphabet, for all ε > 0 (Theorem 15). Under the same assumption, we show
that the transition minimization problem for binary input alphabets is not
approximable within n1/5−ε, for all ε > 0 (Corollary 16). Before this work,
the known inapproximability results for these problems were based on a
much stronger assumption [4].

Some of the hardness results are based on a reduction from the biclique edge cover
problem, which we prove to be neither approximable within |V |1/3−ε nor |E|1/5−ε

unless P = NP in Theorem 6.

2 Preliminaries

First we recall some definitions from formal language and automata theory. In
particular, let Σ be an alphabet and Σ∗ the set of all words over the alphabet Σ,
containing the empty word λ. The length of a word w is denoted by |w|, where

|λ| = 0. The reversal of a word w is denoted by wR and the reversal of a
language L ⊆ Σ∗ by LR, which equals the set {wR | w ∈ L }. Furthermore let
Σn = {w ∈ Σ∗ | |w| = n }.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q ×
Σ → 2Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is
the set of accepting states. The transition function δ is extended to a function
from δ : Q × Σ∗ → 2Q in the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =
⋃

q′∈δ(q,a) δ(q′, w), for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. A nondeterministic finite

automaton A = (Q, Σ, δ, q0, F) is a deterministic finite automaton (DFA), if
|δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. The language accepted by a finite
automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }. Two automata are
equivalent if they accept the same language.

For a regular language L, the deterministic (nondeterministic, respectively)
state complexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal
number of states needed by a deterministic (nondeterministic, respectively) fi-
nite automaton accepting L. The transition complexity is analogously defined
as the state complexity and we abbreviate the deterministic (nondeterministic,
respectively) transition complexity of a regular language L by tc(L) (ntc(L),
respectively).

Here we are interested in the state (transition, respectively) minimization
problem for nondeterministic finite automata. This problem is defined as fol-
lows: For a given finite automaton A and an integer k, decide whether there
exists a nondeterministic finite automaton B with at most k states (transitions,
respectively) such that L(A) = L(B). As already mentioned in the introduction,
this problem is PSPACE-complete even if the given automaton is guaranteed to
be deterministic [8]. However, other computational complexity aspects may vary
if the instance to minimize is described as a nondeterministic or deterministic
finite automaton. The following theorem describes such a situation—we omit the
proof due to lack of space.

Theorem 1. (i) The problem to determine for a given deterministic finite au-
tomaton, whether there exists a nondeterministic finite automaton B with at
most k states (transitions, respectively) such that L(A) = L(B) is fixed-parameter
tractable w.r.t. parameter k. (ii) Provided P 6= PSPACE, the aforementioned
problems are not fixed-parameter tractable, if the input is given as a nondeter-
ministic finite automaton instead. ⊓⊔

We also need some notions from graph theory. A bipartite graph is a 3-tuple
G = (U, V, E), where U and V are finite sets of vertices, and E ⊆ U×V is a set of
edges. A bipartite graph H = (U ′, V ′, E′) is a subgraph of G if U ′ ⊆ U , V ′ ⊆ V ,
and E′ ⊆ E. The subgraph H is induced if E′ = (U ′ × V ′) ∩ E, the subgraph
induced by U ′ and V ′ is denoted by G[U ′, V ′]. A set C = {H1, H2, . . . , Hk} of
non-empty bipartite subgraphs of G is an edge cover of G if every edge in G is
present in at least one subgraph. An edge cover C of the bipartite graph G is
a biclique edge cover if every subgraph in C is a biclique, where a biclique is a

bipartite graph H = (U, V, E) satisfying E = U × V . The bipartite dimension
of G is referred to as d(G) and is defined to be the size of a smallest biclique
edge cover of G. The associated decision problem is a classical one [3, GT18],
and a reformulation of the biclique edge cover problem in terms of finite sets
gives the set basis problem [3, SP7]. The following result was shown in [10]:

Theorem 2. Deciding whether for a given bipartite graph G and an integer k
there exists a biclique edge cover for G consisting of at most k bicliques is NP-
complete.

Finally, we assume the reader to be familiar with the basic notations of ap-
proximation theory as contained in textbooks such as [12]. In particular, trans-
ferring known inapproximability results to new problems is most easily achieved
if we use some kind of approximation-preserving reduction. Several such types
of reduction have been proposed; our weapon of choice is the S-reduction intro-
duced in [9]: Loosely speaking, for two minimization problems Π and Π ′ and
associated functions |x|Π and |y|Π′ measuring the size of respective inputs, an
S-reduction from Π to Π ′ with amplification (a(n), |x|Π , |y|Π′), where a(n) is
monotonically increasing, consists of a polynomial-time computable function f
which maps each instance x of Π to an instance y of Π ′ such that |y|Π′ ≤ a(|x|Π),
and a polynomial-time computable function g that maps back instance-solution
pairs of Π ′ to instance-solution pairs of Π such that the performance ratios of
the solutions are linearly related. This kind of reduction has the following nice
property [9, Proposition 1]:

Lemma 3. Let b : IN → IR+ be a positive function, and let Π = (I, sol, m),
Π ′ = (I ′, sol′, m′) be two minimization problems. Assume Π ′ is approximable
within b(|y|Π′), for all y ∈ I ′, and there is an S-reduction from Π to Π ′ with
amplification (a(n), | · |Π , | · |Π′). Then Π is approximable within O(b(a(|x|Π))),
for all instances x of Π.

3 Synthesizing a Minimal Nondeterministic Finite

Automaton From a Given Truth Table

In this section we investigate the approximation complexity of minimizing non-
deterministic finite automata when specifying the input by a truth table, an
open question in [4]. First we show that the decision version of the problem of
minimizing the number of states is NP-complete. Then we present two simple
approximation algorithms for minimizing the number of states or transitions.
Moreover, we show that the best possible approximation ratio is related to the
one of the biclique edge cover problem. In order to formally define the problem
we are interested in, we need some more notations.

To each m-bit Boolean function f : {0, 1}m → {0, 1}, where m ≥ 1 is some
natural number, we can naturally associate a finite binary language as follows:

Lf = { x1x2 . . . xm ∈ {0, 1}m | f(x1, x2, . . . , xm) = 1 }.

In [4], the following problem was proposed: Given a truth table specifying a
Boolean function f : {0, 1}m → {0, 1} and an integer k, is there a nondetermin-
istic finite automata with at most k states (transitions, respectively) accepting
the language Lf?

For the the above stated problem we are able to show NP-completeness in
case of state minimization by a reduction from the biclique edge cover problem.
But the used reduction does not preserve approximability. The proof of the
following Theorem can be found in the full version of the paper.

Theorem 4. Deciding whether for a given truth table f : {0, 1}m → {0, 1} and
a positive integer k there is a nondeterministic finite automaton with at most k
states accepting language Lf is NP-complete. ⊓⊔

Next we consider how well the problem under consideration can be approxi-
mated. By very simple algorithms, we obtain the following situation:

Theorem 5. (i) Given a truth table of size N = 2m, specifying an m-bit Boolean
function function f , then there is a polynomial-time algorithm approximating the
number of states of a state minimal nondeterministic (unambiguous, respectively)
finite automaton accepting Lf within a factor of O(

√
N/ logN). (ii) When con-

sidering transition minimization the performance ratio changes to O(N/(log N)2).

Proof (Sketch). First we note that nondeterministic state and transition com-
plexity are both at least m = log N , except when Lf is empty. For state mini-

mization we use a construction given in [6] to obtain a NFA with O(
√

N) states.
For transition minimization recall that the minimal deterministic finite automa-
ton accepting Lf can have at most O(N/ log N) transitions [2]. Then the stated
bounds easily follow. ⊓⊔

In the remainder of this section we derive an inapproximability result for the
problem under consideration. In order to get good inapproximability ratios, the
biclique edge cover problem is a natural candidate to reduce from. By combining
a recent inapproximability result for the chromatic number problem [14] with the
approximation preserving reduction from the minimum clique partition problem
given in [11], we see that the problem is not approximable within |V |1/5−ε. But
that is not the end of the line:

Theorem 6. For all ε > 0, the biclique edge cover problem cannot be approx-
imated within |V |1/3−ε or |E|1/5−ε, unless P = NP. This still holds in the
restricted case where the input G = (U, V, E) is a balanced bipartite graph, that
is |U | = |V |, and has bipartite dimension at least Ω(|V |2/3).

Proof. Let the clique partition number χ(I) of a graph I be defined as the small-
est number k such that the vertex set of I can be covered by at most k cliques.
The associated decision problem is NP-complete [3, GT15], and as a simple re-
formulation of the graph coloring problem, not approximable within |V |1−ε, for
all ε > 0, unless P = NP [14]. We briefly recall the construction for reducing

the clique partition problem to the biclique edge cover problem given in [11,
Theorem 5.1a].

For an undirected graph I = (V, E) with V = {v1, v2, . . . , vn}, we construct
its bipartite version by setting IB = (XB, YB , EB) as set of left vertices XB =
{x1, x2, . . . , xn}, as set of right vertices YB = {y1, y2, . . . , yn}, and (xi, yj) ∈ EB

if and only if i = j or {vi, vj} ∈ E. An edge (xi, yj) is called ascending if i < j,
descending if i > j, and horizontal if i = j.

The biclique edge cover instance G = (X, Y, E) consists of t2 copies (the
number t to be fixed later accordingly) of IB , which we think of as being arranged
in a t× t grid; and the bipartition of the vertex set is inherited from IB. The ith
left (right, respectively) vertex in copy (p, q) is denoted by (xi, p, q) ((yi, p, q),
respectively). Two vertices (xi, p, q) and (yj , r, s) in different copies are connected
by an edge if: either they are in the same row, i.e., p = r, and (xi, yj) is an
ascending edge in EB , or they are in the same column, i.e., q = s, and (xi, yj)
is a descending edge in EB. Accordingly, we say that an edge in E connecting
vertices (xi, p, q) and (yj , r, s) is ascending if i < j, descending if i > j, and
horizontal if i = j.

In [11], it is noted that if there is a system of s bicliques covering all horizontal
edges in E, then a partition of I into at most s/t2 cliques can be constructed in
polynomial time from this system, and

χ(I) ≤ d(G)/t2. (1)

Conversely, each partition of I into r cliques corresponds to a system of rt2 bi-
cliques which cover all the horizontal edges in E, and maybe some non-horizontal
edges. However, note that the rt2 bicliques do not necessarily cover all edges in-
volving only vertices of a single copy of IB : As an example, consider the partition
of the graph I given in Figure 1 into r = 3 cliques.

To cover the remaining edges, we can do somewhat better than proposed in
the original reduction: For xi ∈ XB, define Xi,p as the set of ith left vertices in
the copies of IB which are in row p, and define Yi,p as the set of right vertices y
in row p such that ((xi, p, q), y) is an ascending edge in E. It is not hard to see
that the induced subgraph G[Xi,p, Yi,p] is a biclique which covers all ascending
edges in row p incident to xi, see Figure 1 for illustration by example.

By proceeding in this way for each row and each left vertex xi in XB, all
ascending edges in G can be covered using no more than tn bicliques. The de-
scending edges in G can be covered by tn bicliques in a similar manner. Thus

d(G) ≤ t2χ(I) + 2tn. (2)

Suppose now C is a biclique edge cover for G of size s. Then we can construct a
clique partition for I of size s/t2 in polynomial time from C, see [11] for details.
Now we fix t = 4n, and compare performance ratios using Inequality (2):

s/t2

χ(I)
≤ s

d(G) − 2tn
≤ 2

s

d(G)
,

1 2

3

x3 y3

x2 y2

x1 y1

(x
3
,r

,1
)

(y
3
,r

,1
)

(x
2
,r

,1
)

(y
2
,r

,1
)

(x
1
,r

,1
)

(y
1
,r

,1
)

Fig. 1. The original graph I (top left), the bipartite graph IB (lower left), and the
subgraph of G induced by the vertices in row r (right), consisting of t = 3 copies of IB .
The induced subgraph G[X1,r , Y1,r] forms a biclique.

where the last statement above holds since 2tn = 1
2 t2 ≤ 1

2d(G) by Inequality (1).
We have established a S-reduction with expansion (O(n3), |V |, |X |). Then the de-
sired hardness result regarding the measure |X | follows by Lemma 3. Estimating
the number of edges in E gives a total number of at most t2|EB|+2t ·

(

t
2

)

|EB| =
O(|V |5), so this is equally a S-reduction with expansion (O(n5), |V |, |E|). Again
by Lemma 3, the claimed inapproximability result follows. Finally, we note that
Inequality (1) implies that d(G) ≥ t2 = Ω(|X |2/3), since |X | = Θ(n3) and
t = 4n. ⊓⊔

Theorem 7. Given a truth table of size N specifying a Boolean function func-
tion f , no polynomial-time algorithm can approximate the number of states of a
state minimal nondeterministic finite automaton accepting Lf with performance
ratio N1/6−ε, for all ε > 0, unless P = NP.

Proof. We use the finite language to encode the edges in the graph G = (X, Y, E)
from the proof of Theorem 6, and the notations defined therein. Recall X consists
of nodes of the form (xi, p, q) with xi ∈ XB, p denotes a row index and q a column
index, and similar for yj , that is (xi, p, q) and (yj , p, q) belong to the same copy
of IB. Without loss of generality we assume V = {0, 1}m for some m. The t
addresses for rows and columns can be respectively encoded in binary using a
fixed length of log t = m + 2. Throughout the rest of the proof, c1, c2, . . . , ct

denote the words encoding the t column addresses, and in a similar manner,
r1, r2, . . . , rt the row addresses. We then encode the edges ((x, p, q), (y, a, b))
in E as xrpcq(racb)

Ry, and define LG as the set of all codewords corresponding
to an edge in E. In the following, we will use the term “edge” to denote a word
encoding an edge in E if there is no risk of confusion.

Claim 8. The nondeterministic state complexity of LG is bounded below by the
bipartite dimension of G.

Proof. We apply the biclique edge cover technique [5, Theorem 4] to give a
lower bound for nsc(LG). Let Γ = (A, B, ELG

) be the bipartite graph given by
A = B = {0, 1}m+2(m+2), and ELG

= { (u, v) ∈ A × B | uv ∈ LG }. By an
obvious bijection holds d(G) = d(Γ), and the latter gives a lower bound for the
nondeterministic state complexity of LG. ⊓⊔

Claim 9. nsc(LG) = O(d(G)) + O(|X |2/3 log |X |).

Proof. We establish the claim by constructing a sufficiently small NFA accepting
the language LG from a minimum biclique edge cover for G. For the horizontal
edges in E, we give a construction inspired by the proof of Theorem 6. Let
{ (Xj, Yj) | 1 ≤ j ≤ χ(I) } be a minimum set of bicliques covering all horizontal
edges in IB = (XB, YB, EB). For the ith biclique, we define an auxiliary language
Hj as Hj = Xj ·M ·Yj , where M = { rc(rc)R | r, c ∈ {0, 1}m+2 } is the language
ensuring that the row and column address of x ∈ Xj is the same as the row and
column address of y ∈ Yj . As there are no horizontal edges between different
copies of IB, language M provides that the union of languages

⋃

j Hj contains all
codewords corresponding to horizontal edges in E, and is a subset of LG. Each Hj

can be described by a nondeterministic finite automaton having O(t2) states: As
all words in the sets Xj and Yj have length m, each of them can be accepted by
a NFA with O(2m/2) = o(t) states. The language M can be accepted by a NFA
with O(22(m+2)) = O(t2) states. A schematic drawing of such an automaton
is given in Figure 2. And a standard construction for nondeterministic finite
automata yields an automaton with O(t2) states for the concatenation of these
languages. Finally, the union of these languages can be accepted by a NFA having
O(t2 · χ(I)) = O(d(G)) many states.

We use a similar matching language as M to construct a NFA accepting a
subset of the codewords of E which contains all ascending edges. This time, the
language has to ensure that the the left and the right vertex share the same row
address, that is M ′ = { rc1c2r

R | r, c1, c2 ∈ {0, 1}m+2 }, and this language can
be accepted by a NFA with only O(t log t) states, see Figure 2 for illustration.

Following the idea in the proof of Theorem 6, the graph G has for every
row p and every vertex xi ∈ XB a biclique G[Xi,p, Yi,p] containing only ascending
edges. As we have an ascending biclique for each xi ∈ {0, 1}m, it is more economic
to share the states needed for addressing. Thus, a part of the automaton is a
binary tree, whose root is the start state and whose leaves address the nodes
in XB. That is, after reading a word x of length m, the automaton is in a unique
leaf of the binary tree. In a symmetric manner, we construct an inverted binary
tree whose leaves address the nodes in YB, and whose transitions are directed
towards the root, which is the final state of the automaton. It remains to wire the
copies of the automaton accepting M ′ into these two binary trees appropriately,
using no more than |XB| copies of it: Each leaf xi of the binary tree, addressing
some node in XB, is identified with the start state of a fresh copy of the NFA.
The transitions entering the final state of this copy are replaced with transitions

r
c cR

rR

r
c1 c2

rR

r1

c c
rR
2

Fig. 2. Schematic drawings of the nondeterministic finite automata accepting M (left),
M ′ (top right), and M ′′ (bottom right).

entering the inverted binary tree at the appropriate address. This completes the
description of the construction for a NFA having O(|XB |+ |YB |+ |XB|t log t) =
O(|X |2/3 log |X |) states accepting a subset of E including all ascending edges,
since |X | = Θ(t3) and |XB| = |YB| = Θ(t).

For the descending edges, we carry out a similar construction, this time using
the language M ′′ = { r1cc

rr2 | r1, c, r2 ∈ {0, 1}m+2 } ensuring that the column
addresses match, see Figure 2. Then a similar construction gives a compact NFA
describing the codewords of a set of edges including all descending edges in G.
Finally, the union of all these languages can be described by a NFA with the
desired upper bound on the number of states. ⊓⊔

Assume now there exists a polynomial-time algorithm approximating nsc(LG)
within |X |1/3−ε, that is it finds a NFA A of size at most |X |1/3−ε · nsc(LG). By
Claim 8, this can be seen equivalently as an algorithm finding a biclique edge
cover for G of size at most |X |1/3−ε ·nsc(LG). We estimate the performance ratio
of the latter algorithm:

|X |1/3−ε · nsc(LG)

d(G)
= |X |1/3−ε · O(d(G)) + O(|X |2/3 log |X |)

d(G)

by using Claim 9. The latter term is O(|X |1/3−ε log |X |) because Theorem 6
asserts that d(G) ≥ |X |2/3. If we choose a small positive real δ such that ε−δ > 0,
then for |X | large enough, |X |1/3−ε log |X | < |X |1/3−(ε−δ). Together with the
final argument given in Theorem 6, this implies P = NP.

As the size of the graph and the size of the truth table are related by N =
Θ(|X |2), the problem is not approximable within N1/6−2ε for every positive
real ε, and the theorem is established. ⊓⊔

For transition minimization we encounter the following situation.

Theorem 10. Given a truth table of size N specifying a Boolean function f , no
polynomial-time algorithm can approximate the number of transitions of a tran-
sition minimal nondeterministic finite automaton accepting Lf with performance
ratio N1/6−ε, for all ε > 0, unless P = NP.

Proof. The language LG defined in the proof of Theorem 7 can be accepted by
a polynomial-time constructible DFA A having at most O(m · |LG|) states and
transitions. We can mimic the proof of Theorem 7 if we are able to verify in-
equalities relating nondeterministic transition complexity of LG to the bipartite
dimension of G in a way similar to Claim 8 and Claim 9.

Claim 11. The nondeterministic transition complexity of LG is bounded below
by the bipartite dimension of G minus 1.

For an upper bound on ntc(LG), we take a closer look at the NFA constructed
in the proof of Claim 9.

Claim 12. ntc(LG) = O(d(G)) + O(|X |2/3 log |X |).
The rest of the proof follows along the lines of the proof of Theorem 7. ⊓⊔

4 Synthesizing a Minimal Nondeterministic Finite

Automaton From a Given Deterministic One

This section contains results on the inapproximability of the minimization prob-
lem for nondeterministic finite automata, when the input is specified by a (deter-
ministic) finite state automaton. This problem was investigated in [4, 8]: Given a
finite automaton A and an integer k, is there a nondeterministic finite automaton
with at most k states (transitions, respectively) accepting language L(A)?

Note that the minimization problems w.r.t. states (transitions, respectively)
for nondeterministic finite automata are trivially approximable within O(n/ log n),
if the input is given by a deterministic finite automaton. Observe that the min-
imal deterministic finite automaton equivalent to a given deterministic one is
also a feasible solution for the respective problem. The performance ratio of this
solution can be bounded using the fact that the blow-up in the number of states
or transitions inferred by determinization is at most exponential. While this is
only a poor performance guarantee, a strong inapproximability result is obtained
in [4], but under a much stronger (cryptographic) assumption than P 6= NP.
We just note their result in passing:

Theorem 13. (i) Given an n-state deterministic finite automaton A, no poly-
nomial-time algorithm can approximate the number of states of a state minimal
nondeterministic finite automaton accepting L(A) with performance ratio better

than
√

n
polylog(n) , if nonuniform logspace contains strong pseudo-random functions.

(ii) In case of transition minimization the problem remains inapproximable with
the same assumption as above and performance ratio better than n

polylog(n) ,

where t is the number of transitions of the given deterministic finite state au-
tomaton.

In order to obtain our first inapproximability result on the problem where a
DFA is given, we use Theorem 6 and a reduction from the biclique edge cover
problem to the nondeterministic finite state automaton minimization problem,

where the input is a deterministic finite state automaton, given in [1, Lemma 1].
The noted reduction is an S-reduction with expansion (O(n), |V |, |Q|).
Corollary 14. Given a n-state deterministic finite automaton A accepting a
finite language over an alphabet of size O(n), no efficient algorithm can approxi-
mate the number of states of a state minimal nondeterministic finite automaton
accepting L(A) with performance ratio n1/3−ε, for all ε > 0, unless P = NP. ⊓⊔

For fixed alphabet size, we obtain a corresponding result from Theorem 7,
as from every truth table, an equivalent DFA of smaller size can be constructed
in polynomial time. Exploiting the special structure of the language used in the
proof of Theorem 7, we can get an even higher bound.

Theorem 15. Given a n-state deterministic finite automaton A accepting a
finite language over an alphabet of size two, no efficient algorithm can approxi-
mate the number of states of a state minimal nondeterministic finite automaton
accepting L(A) within a factor of n1/5−ε, for all ε > 0, unless P = NP.

Proof (Sketch). To obtain the inapproximability result, we again use the lan-
guage LG defined in the proof of Theorem 7. The crucial observation is that this
language contains |E| = O(25m) words of length O(m). Thus, a binary tree-like
deterministic finite automaton of size O(m · |E|) accepting all these words can
be constructed in polynomial time—note that this size is much smaller than
the truth table specifying LG. Then one can show, similarly as in the proof of
Theorem 7, that the stated inapproximability bound holds. ⊓⊔

By combining the observations in Theorems 10 and 15, we obtain for the
corresponding problem of minimizing the number of transitions:

Corollary 16. Given a deterministic finite automaton A with t transitions ac-
cepting a finite language over a binary alphabet, no efficient algorithm can ap-
proximate the number of transitions of a transition minimal nondeterministic
finite automaton accepting L(A) within a factor of t1/5−ε, for all ε > 0, unless
P = NP. ⊓⊔

5 Conclusions

We compared nondeterministic finite automata minimization problems for regu-
lar languages, where the language is specified by different means—in decreasing
order of succinctness: By a nondeterministic finite automaton, a deterministic
automaton, or by a truth table. When given an NFA, the approximability of
these problems is already settled [4, 7]. When given a DFA as input, approxima-
tion hardness was known only modulo cryptographic assumptions [4]. The main
contribution of this paper is that we do not need such strong assumptions, that
is, the problems are hard to approximate unless P = NP. This essentially also
holds if the input is specified as a truth table, but for the latter case, we were
able to provide simple approximation algorithms with nontrivial performance
guarantees. This settles most of the research problems suggested in [4].

Acknowledgments. We thank Gregor Gramlich for carefully reading an earlier
draft of this work, and to the anonymous referees for many valuable suggestions
and corrections.

References

1. J. Amilhastre, Ph. Janssen, and M.-C. Vilarem. FA minimisation heuristics for a
class of finite languages. In O. Boldt and H. Jürgensen, editors, Proceedings of the

4th International Workshop on Implementing Automata, number 2214 in LNCS,
pages 1–12, Potsdam, Germany, July 2001. Springer.

2. J.-M. Champarnaud and J.-E. Pin. A maxmin problem on finite automata. Discrete

Applied Mathematics, 23:91–96, 1989.
3. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. Freeman, 1979.
4. G. Gramlich and G. Schnitger. Minimizing NFA’s and regular expressions. In

V. Diekert and B. Durand, editors, Proceedings of the 22nd Annual Symposium on

Theoretical Aspects of Computer Science, number 3404 in LNCS, pages 399–411,
Stuttgart, Germany, February 2005. Springer.

5. H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state com-
plexity is hard (extended abstract). In O. H. Ibarra and Z. Dang, editors, Proceed-

ings of the 10th International Conference on Developments in Language Theory,
number 4036 in LNCS, pages 363–374, Santa Barbara, California, USA, June 2006.
Springer.

6. H. Gruber and M. Holzer. On the average state and transition complexity of
finite languages. Theoretical Computer Science, Special Issue: Selected papers of

“Descriptional Complexity of Formal Systems 2006”. Accepted for publication.
7. H. Gruber and M. Holzer. Computational complexity of NFA minimization for

finite and unary languages. In Proceedings of the 1st International Conference

on Language and Automata Theory and Applications, LNCS, Tarragona, Spain,
March 2007. Springer. Accepted for publication.

8. T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on

Computing, 22(6):1117–1141, December 1993.
9. V. Kann. Polynomially bounded minimization problems that are hard to approx-

imate. Nordic Journal of Computing, 1(3):317–331, Fall 1994.
10. J. Orlin. Contentment in graph theory: Covering graphs with cliques. Indagationes

Mathematicae, 80:406–424, 1977.
11. H. U. Simon. On approximate solutions for combinatorial optimization problems.

SIAM Journal on Discrete Mathematics, 3(2):294–310, 1990.
12. V. V. Vazirani. Approximation Algorithms. Springer, 2001.
13. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 1, pages 41–110. Springer, 1997.
14. D. Zuckerman. Linear degree extractors and the inapproximability of max clique

and chromatic number. Report TR05-100, Electronic Colloquium on Computa-
tional Complexity (ECCC), September 2005.

