
On Minimal Grammar Problems for Finite
Languages (Extended Abstract)

Hermann Gruber1, Markus Holzer2, and Simon Wolfsteiner3?

1 knowledgepark GmbH,
Leonrodstr. 68, 80636 München, Germany

hermann.gruber@kpark.de
2 Institut für Informatik, Universität Giessen,

Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

3 Institut für Diskrete Mathematik und Geometrie, TU Wien,
Wiedner Hauptstr. 8–10, 1040 Wien, Austria

simon.wolfsteiner@tuwien.ac.at

Abstract. We investigate the grammatical complexity of finite lan-
guages w.r.t. context-free grammars and variants thereof. For fixed al-
phabets, it is shown that both the minimal number of productions and
the minimal size of a context-free grammar generating a finite language
cannot be approximated within a factor of o(p1/6) and o(s1/7), respec-
tively, unless P = NP. Here, p is the number of productions and s the
size of the given grammar. Similar inapproximability results also hold for
linear context-free and right-linear (or regular) grammars. As a byprod-
uct, we show that the language of all cubes of a given length requires an
exponential number of context-free productions and we also investigate
upper and lower bounds on the complexity of the operations union and
concatenation for finite languages.

1 Introduction

Questions regarding the economy of descriptions of formal languages by different
formalisms such as automata, grammars, and formal systems have been studied
quite extensively in the past, see, e.g., [13]. The results in [2, 4] mark the starting
point of a theory of the grammatical complexity of finite languages, where the
chosen complexity measure is the number of productions. In particular, [4] gives
a relative succinctness classification for various kinds of context-free grammars.
Further results along these lines can be found in [1–3, 16] as well as some newer
ones in, e.g., [7, 8, 10]. It is worth mentioning that in [10] a method for proving
lower bounds on the number of productions for context-free grammars was devel-
oped. For instance, it was shown that any context-free grammar generating the
set of all squares of a given length requires an exponential number of productions.

? This research was completed while the author was on leave at the Institut für In-
formatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany, in 2017 and is
supported by the Vienna Science Fund (WWTF) project VRG12-004.

More recently, it was shown that there is a close relationship between a certain
class of formal proofs in first-order logic and a certain class of (tree) grammars.
In particular, the number of productions in such a grammar corresponds to the
number of certain inference rules in the proof [9]. This correspondence sparked
our interest in further investigating questions regarding the grammatical com-
plexity of finite languages. The main result of this paper is that, for fixed alpha-
bets of size at least 5, the minimal number of productions necessary to generate a
finite language by a context-free grammar cannot be approximated within a fac-
tor of o(p1/6), unless P = NP. Here, p is the number of productions in the given
grammar. Since the size of a context-free grammar depends on the number of its
productions, the above result also implies that the size of a minimal grammar
generating a finite language cannot be approximated within a factor of o(s1/7),
unless P = NP, where s is the size of the given grammar. This second result is
related to the NP-hard smallest grammar problem with approximation ratio at
least 8569

8568 , unless P = NP from [6]. There, the smallest grammar problem asks
for the smallest (in terms of size) context-free grammar that generates exactly
one given word. As a byproduct of our inapproximability result, we show—using
elementary methods already developed in [4]—that the set of all cubes of a given
length requires an exponential number of productions. To be more precise, the
language Tn = {w$w#w | w ∈ {0, 1}n } requires exactly 2n context-free pro-
ductions; this is also a lower bound on the size of a grammar for Tn. This result
is more precise than using the lower bound method from [10] that results only
in a lower bound of Ω(2n/8/

√
3n) many context-free productions. To obtain our

main result, we reduce from the coNP-complete propositional tautology prob-
lem. The reduction features a gadget based on the language Tn. The correctness
proof of the reduction uses estimates on the grammatical complexity of language
operations on finite languages. Therefore, we study the grammatical complexity
of union and concatenation of finite languages, thus complementing the results
from [7, 8] on infinite languages. While for union we have a tight upper bound for
all grammar types under consideration, the situation changes when we consider
concatenation. Here, the upper bound for linear grammars differs from the one
for the other grammar types. However, so far, we were not able to show that the
upper bound is tight for any of the considered grammar types.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as contained in [12]. Nevertheless, to fix notation and terminology, we
introduce the basic notions and results relevant to this paper in this section.

Let Σ be a finite alphabet. Then Σ∗ denotes the set of all words over the
finite alphabet Σ including the empty word ε, and we write Σ+ for Σ∗\{ε}. The
length of a word w in Σ∗ is denoted by |w|. In particular, the length of the empty
word ε is 0, i.e., |ε| = 0. Let ` ≥ 0. Then Σ` (Σ≤`, respectively) refers to the
set of all words over Σ of length exactly ` (at most `, respectively). A subset L
of Σ∗ is said to be a language. Any language L ⊆ Σ≤`, for ` ≥ 0, is called finite

and, unless stated otherwise, we always assume that ` = max{ |w| | w ∈ L }. If L
is a subset of Σ`, for ` ≥ 0, then L is called a uniform language. This means
that in a uniform language all words have the same length.

A context-free grammar (CFG) is a 4-tuple G = (N,Σ,P, S), where N and Σ
are disjoint alphabets of nonterminals and terminals, respectively, S ∈ N is the
axiom (or start symbol), and P is a finite set of productions of the form A→ α,
where A ∈ N and α ∈ (N∪Σ)∗. As usual, the derivation relation of G is denoted
by ⇒G and the reflexive and transitive closure of ⇒G is written as ⇒∗G. The
language generated by G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗G w }. We also
consider the following restrictions of context-free (CF) grammars: (i) a context-
free grammar is said to be linear context-free (LIN) if the productions are of the
form A → α, where A ∈ N and α ∈ Σ∗(N ∪ {ε})Σ∗, and (ii) a context-free
grammar is said to be right-linear or regular (REG) if the productions are of the
form A → α, where A ∈ N and α ∈ Σ∗(N ∪ {ε}). Furthermore, Γ will denote
the set of those abbreviations in the sequel, that is, Γ = {REG, LIN,CF}.

We are interested in the complexity of finite languages w.r.t. different gram-
mar types. To be more precise: what is the smallest number of productions a
grammar needs in order to generate a language L? Let G = (N,Σ,P, S) be
a context-free grammar. We define |G| to be the number of productions if not
stated otherwise, i.e., |G| = |P |. Then the complexity of a finite language L w.r.t.
X-grammars, for X ∈ Γ , also called the X-complexity of L, is defined as

Xc(L) = min{ |G| | G is an X-grammar with L = L(G) }.

We say that G is a minimal X-grammar, for X ∈ Γ , generating a finite lan-
guage L if L(G) = L and |G| = Xc(L).

The previously introduced measures for the different types of grammars are
related to each other as follows: by definition, CF ≤c LIN ≤c REG, where X ≤c Y ,
for X,Y ∈ Γ , if and only if Xc(L) ≤ Yc(L), for every finite language L. In the
case that X ≤c Y , we say that X is more succinct than Y .

3 Incompressible Languages

In this section, we consider different finite languages and show that they can
only be generated minimally by listing all words that belong to the language
under consideration. Such languages will be called (context-free) incompressible
languages in the following. Some incompressible languages can already be found
in the seminal papers [2, 4] on concise description of finite languages by different
types of grammars. For instance, as shown in [2], the language

Ln = { aibici | 1 ≤ i ≤ n }

contains a linear number of words and satisfies CFc(Ln) = |Ln|. Further ex-
amples of incompressible languages can be found in [4]. The proof is based on
the following Lemma 1 which states some easy facts about minimal context-free
grammars generating finite languages and was established in [4].

Lemma 1. Let G = (N,Σ,P, S) be a minimal context-free grammar generating
a finite language L. Then (i) for every A ∈ N \{S}, there are α1, α2 ∈ (N ∪Σ)∗

with α1 6= α2 such that A→ α1 and A→ α2 are in P , (ii) for every A ∈ N \{S},
the set LA(G) = {w ∈ Σ∗ | A⇒∗G w } contains at least two words, (iii) there is
no derivation of the form A⇒+

G α1Aα2 with α1, α2 ∈ (N∪Σ)∗, and (iv) for every
nonterminal A ∈ N \{S}, there are u1, u2, v1, v2 ∈ Σ∗ such that u1Au2 6= v1Av2
and S ⇒∗G u1Au2 and S ⇒G v1Av2.

A closer look at [4] reveals that the incompressible languages presented there
are of size polynomial in the length of a longest word. But what about in-
compressible finite languages containing many short words? In fact, for some
languages it is known that the CF-complexity is high. For instance, recently
in [10], it was shown that any context-free grammar for the copy language Cn =
{w$w | w ∈ {0, 1}n } over a two letter alphabet has size at least Ω(2n/4/

√
2n)—

there, the size was alternatively defined as the sum of all production lengths;
the length of a production A→ α is |α|+ 2. The technique presented in [10] to
prove this result is quite involved and generalises a previously known result on
an exponential lower bound on context-free grammars generating the set of all
permutations over a finite alphabet. Note that the above mentioned lower bound
for the language Cn is not enough to prove that this language is incompressible
in our sense. In [10], also more complicated languages such as

Tn = {w$w#w | w ∈ {0, 1}n },

the language of all triples of length n, are considered. The lower bound for Tn
obtained in [10] is Ω(2n/8/

√
3n), while the trivial upper bound is |Tn| = 2n. In

contrast, we are able to show that Tn is generated minimally by a context-free
grammar only by simply listing all words. Notably, this can be derived using the
classic technique from [4].

Theorem 2. Let X ∈ Γ and n ≥ 1. Then Xc(Tn) = |Tn|.

Proof. theorem LetG = (N,Σ,P, S) be a minimal CFG generating Tn. Moreover,
let the nonterminal A ∈ N \ {S} be arbitrary. By Lemma 1, there are deriva-
tions S ⇒∗G u1Au2 and S ⇒∗G w1Aw2 with u1, u2, w1, w2 ∈ Σ∗ and u1Au2 6=
w1Aw2 as well as x, y ∈ Σ∗ with x 6= y, A ⇒∗G x, and A ⇒∗G y. We will first
show that it is impossible that x, y ∈ {0, 1}∗ and then that both x and y must
contain the symbols $ and #. Note that |x| = |y|, for otherwise one could derive
words v1 and v2 such that |v1| 6= |v2|, but Tn only contains words having the
same length.

Assume, w.l.o.g., that x ∈ {0, 1}∗ (the case that y ∈ {0, 1}∗ is symmetric).
From x 6= y and |x| = |y| it follows that both x 6= ε and y 6= ε must hold. Now,
let w ∈ {0, 1}n; we distinguish three cases:

1. Suppose that u1x ∈ {0, 1}∗ and u2 ∈ {0, 1}∗{$}{w}{#}{w}. Then u1xu2 =
v1$w#w and u1yu2 = v2$w#w, for v1, v2 ∈ {0, 1}n and v1 6= v2. Thus,
either v1 6= w or v2 6= w, i.e., v1$w#w 6∈ Tn or v2$w#w 6∈ Tn. This is a
contradiction.

2. Suppose that u1 ∈ {w}{$}{0, 1}∗ and u2 ∈ {0, 1}∗{#}{w}. Then, since x 6=
y, there are two derivations S ⇒∗G u1Au2 ⇒∗G v = u1xu2 and S ⇒∗G
u1Au2 ⇒∗G v′ = u1yu2 with v 6= v′. In particular, v = w$u#w and v′ =
w$u′#w with u 6= w or u′ 6= w. But this means that v 6∈ Tn or v′ 6∈ Tn,
which is a contradiction.

3. Suppose that u1 ∈ {w}{$}{w}{#}{0, 1}∗ and xu2 ∈ {0, 1}∗. Symmetric to
case 1. Thus, we obtain a contradiction again.

Similar arguments show that either w1xw2 6∈ Tn or w1yw2 6∈ Tn. Hence, we have
both x 6∈ {0, 1}∗ and y 6∈ {0, 1}∗. Now, suppose that x or y does not contain
both $ and #. Assume, w.l.o.g., that x contains # but does not contain $.
Let w ∈ {0, 1}n; we distinguish two cases:

1. Suppose that y contains $. Then we have S ⇒∗G u1Au2 ⇒∗G v = u1xu2
and S ⇒∗G u1Au2 ⇒∗G v′ = u1yu2, where either v does not contain $ or v′

contains at least two occurrences of $. Thus, either v 6∈ Tn or v′ 6∈ Tn.
2. Suppose that y contains # . Then we have S ⇒∗G u1Au2 ⇒∗G v = u1xu2

and S ⇒∗G u1Au2 ⇒∗G v′ = u1yu2. Together with the fact that x 6= y
and |x| = |y|, it follows that if v ∈ Tn, then v′ 6∈ Tn. If, on the other
hand, v′ ∈ Tn, we have v 6∈ Tn.

In both of these cases, we obtain a contradiction. Thus, both words x and y
must contain both $ and #. This and |x| = |y| implies that x = y. This is
a contradiction to our assumption. Hence, N = {S} and therefore the only
way to generate the language Tn is to list all of its words as right-hand sides
of productions having the sole nonterminal S on the left-hand side. Since by
definition CF ≤c LIN ≤c REG, the statement also holds for X ∈ {REG, LIN}. ut

Later, we will use the language Tn as one of our basic building blocks for the
inapproximability result of the exact complexity of finite languages. It is worth
mentioning that the question as to whether the copy language Cn is incompress-
ible, i.e., whether it can only be generated minimally by a context-free grammar
by listing all words, is still open.

4 Language Operations

Now, we turn our attention to the exact complexity of two operations on finite
languages, namely union and concatenation. The reason for specifically consid-
ering these two operations is due to the fact that the language which we use
in our reduction is defined in terms of union and concatenation and, for our
inapproximability result, we need to obtain complexity bounds on context-free
grammars. In [7, 8], the authors considered some related problems on union and
concatenation, where they discussed the range of applying the respective opera-
tion to two (or a finite number of) languages. They did not restrict themselves
to finite languages, but they showed, e.g., that for two ε-free finite languages L1

and L2 defined over disjoint alphabets the following statement holds:

Xc(L1 ∪ L2) = Xc(L1) + Xc(L2) if X ∈ Γ .

However, we will not restrict ourselves to the union of two finite languages with
disjoint alphabets. Instead, we will show that the following upper bound holds
for arbitrary finite languages L1 and L2 and that it is tight in the sense that we
can give an example of a language that actually reaches this upper bound.

Theorem 3. Let X ∈ Γ and L1 and L2 be finite languages. Then it holds
that Xc(L1 ∪ L2) ≤ Xc(L1) + Xc(L2).

In order to show that the upper bound obtained in Theorem 3 is tight, we
need to show the following Lemma 4—which states that if we decompose a finite
incompressible language into a disjoint union of two languages, then these two
disjoint languages must be incompressible as well.

Lemma 4. Let X ∈ Γ and L be a finite language with Xc(L) = |L|. Moreover,
let L1 and L2 be disjoint finite languages such that L = L1 ∪ L2. Then we
have Xc(L1) = |L1| and Xc(L2) = |L2|.

Recall the finite CF-incompressible language Ln = { aibici | 1 ≤ i ≤ n }
with |Ln| = n. Since Ln can be defined in terms of the union of two disjoint
finite languages, we can use it in conjunction with Lemma 4 in order to show
that the upper bound of Theorem 3 is tight:

Theorem 5. Let X ∈ Γ . Then there is an alphabet Σ such that for all m,n ≥ 1,
there exist finite languages L1 and L2 over Σ with Xc(L1) = m and Xc(L2) = n
such that Xc(L1 ∪ L2) ≥ Xc(L1) + Xc(L2).

Proof. theorem Let X ∈ Γ and Σ = {a, b, c}. For m,n ≥ 1, define the finite
language

L = { aibici | 1 ≤ i ≤ m+ n }.

Moreover, let L1 = { aibici | 1 ≤ i ≤ m } and L2 = L \ L1. Clearly, the intersec-
tion satisfies L1 ∩ L2 = ∅ and L1 ∪ L2 = L. Since both languages L and L1 are
CF-incompressible, we have CFc(L) = |L| = m + n and CFc(L1) = m. Thus, it
follows that CFc(L2) = |L2| = |L| − |L1| = n, by Lemma 4. Consequently,

CFc(L1 ∪ L2) = CFc(L) = m+ n = CFc(L1) + CFc(L2).

This finishes the proof of the stated claim. ut

Let us now consider the concatenation of two finite languages. As we will see
in the following, there are some subtleties that make things more complicated
than in the case of union. A first difference is that there is no uniform upper
bound for all grammar types in Γ . The main reason is that we have not yet found
a better method for combining two linear grammars in a way that the result-
ing grammar is linear as well apart from pre- or appending a regular grammar
generating one of the two languages (in a suitable fashion) to the given linear
grammar generating the other one. For the other grammar types, we obtain an
upper bound that corresponds to the sum of the respective complexities.

Theorem 6. Let X ∈ {REG,CF} and L1 and L2 be finite languages. Then

1. Xc(L1L2) ≤ Xc(L1) + Xc(L2),
2. LINc(L1L2) ≤ min{REGc(L1) + LINc(L2), LINc(L1) + REGc(L2) }.

Another difference between union and concatenation is that we have not yet
been able to show that the upper bound is tight, i.e., we do not know whether
there exists a finite language that reaches the upper bound. The good news
is, however, that we can prove a lower bound on the X-complexity, for X ∈
Γ , for the concatenation of finite languages. To obtain the lower bound, we
will show—given two finite languages L1 and L2 as well as a grammar G that
generates L1#L2—how to construct a grammar G′ from G that generates the
quotient of L1# with the language L(G), that is, L(G′) = (L1#)−1L(G) = L2.
The left quotient of a language L1 with a language L2 is defined as follows:

L−11 L2 = { v ∈ Σ∗ | there is some w ∈ L1 s.t. wv ∈ L2 }.

We omit the braces if L1 is a singleton, i.e., we write w−1L2 instead of {w}−1L2.

Lemma 7. Let X ∈ Γ and L1 and L2 be finite languages over the alphabet Σ.
Then Xc(L1#L2) ≥ max{Xc(L1),Xc(L2) }, where # does not occur in Σ.

We will now take a closer look at how the X-complexity of a language L
changes when we append a fresh symbol to all words in L.

Lemma 8. Let X ∈ Γ . Assume that L is a finite language over the alphabet Σ.
Then Xc(L · #) = Xc(L), where # is a letter that is not contained in Σ. The
statement remains valid if one considers the language # · L instead of L ·#.

As already mentioned, thus far we have not been able to show that the upper
bound on the X-complexity of concatenation is tight, but an immediate conse-
quence of Lemmata 7 and 8 are the following lower bounds on the concatenation
of two finite languages:

Theorem 9. Let X ∈ Γ . Then there is an alphabet Σ such that for all m,n ≥ 1,
there exist finite languages L1 and L2 over Σ with Xc(L1) = m and Xc(L2) = n
such that Xc(L1 · L2) ≥ max{Xc(L1),Xc(L2) }.

5 Inapproximability Results

In this section, we will show the main result of this paper, namely that the
minimal number of context-free productions necessary to generate a finite lan-
guage cannot be approximated within a certain factor, unless P = NP. The
language Tn—introduced in Section 3—will be a basic building block for this
endeavour. The proof strategy is by a reduction from the coNP-complete tautol-
ogy problem for 3-DNF-formulae: given a formula ϕ with m conjunctive clauses
and n variables, where each clause is the conjunction of at most 3 literals, it is
coNP-complete to determine whether ϕ is a tautology—in other words, whether

the negation ¬ϕ of ϕ is unsatisfiable. Then the core idea is to give a suitable
representation of the satisfying assignments of ϕ in {0, 1}n for the n variables in
form of a grammar Gϕ such that ϕ is a tautology if and only if L(Gϕ) = {0, 1}n;
by construction, there is a one-to-one correspondence between assignments and
words from the set {0, 1}n. In order to finish our reduction, we embed Gϕ into
a grammar that generates the language

Lϕ = L(Gϕ) · {&} · {0, 1, $,#}3c·dlogne+2 ∪ {0, 1}n · {&} · Tc·dlogne,

for some carefully chosen constant c. It is not hard to see that this reduc-
tion is polynomial even if we force the grammar for Lϕ to be regular. Then,
we distinguish two cases: (i) On the one hand, if ϕ is a tautology, then we
have Lϕ = {0, 1}n·{&}·{0, 1, $,#}3c·dlogne+2 and there is a context-free grammar
with a constant number of productions that generates Lϕ. For the X-grammars
with X ∈ {REG, LIN}, a linear number of productions suffices, i.e., the number
is in O(n). (ii) On the other hand, if ϕ is not a tautology, then there is an assign-
ment under which ϕ evaluates to false. Hence, there is a word w ∈ {0, 1}n that
corresponds to that assignment and is not a member of L(Gϕ). But then the
left quotient of Lϕ w.r.t. the word w&, that is, the language { v ∈ {0, 1, $,#}∗ |
w&v ∈ Lϕ }, is equal to the language of triples Tc·dlogne. From this quotient con-
struction, it will then follow that Xc(Tc·dlogne) = O(Xc(Lϕ) · n4). Since we have
already seen that Xc(Tc·dlogne) = Ω(nc), we can deduce that Xc(Lϕ) = Ω(nc−4).
This allows us to prove the main result of this paper:

Theorem 10. Let X ∈ Γ . Given an X-grammar with p productions generat-
ing a finite language L, it is impossible to approximate Xc(L) within a factor
of o(p1/6), unless P = NP.

We assume that the reader is familiar with the syntax and semantics of
propositional logic. In the following, we denote the set of propositional variables
by V = {x1, x2, . . .}. We write var(ϕ) for the set of variables occurring in a
propositional formula ϕ and expressions of the form x and ¬x, for x ∈ V , are
called literals. As usual, a truth assignment is a mapping σ : V → {0, 1} which
can be inductively extended to formulae. Since we are going to reduce proposi-
tional formulae to context-free grammars, we will also identify truth assignments
for a formula ϕ with words in {0, 1}n: if var(ϕ) = {x1, x2, . . . xn}, then the word
corresponding to the truth assignment σ(ϕ) is given by σ(x1, x2, . . . , xn) :=
σ(x1)σ(x2) . . . σ(xn). Moreover, we write σ |= ϕ and σ(x1)σ(x2) . . . σ(xn) |= ϕ
if var(ϕ) = {x1, x2, . . . , xn} and σ(ϕ) = 1.

For the sake of convenience, we will identify a clause C = `1 ∧ `2 ∧ `3 also
with a set of literals C = {`1, `2, `3}.

Now, we will construct a regular grammar that generates the satisfying truth
assignments of the given propositional formula ϕ in 3-DNF with |var(ϕ)| = n,
thus reducing the propositional tautology problem to the fixed length universal-
ity problem: does it hold that L(G) = Σ`, for a given grammar G and an inte-
ger `. Let ϕ be a propositional formula in 3-DNF with var(ϕ) = {x1, x2, . . . , xn}
consisting of the conjunctive clauses C1, C2, . . . , Cm, for m ≥ 1. We define a

right-linear grammar Gϕ = (N, {0, 1}, P, S) as follows: the nonterminals are
given by N = {S}∪{Ai,j | 1 ≤ i ≤ m, 2 ≤ j ≤ n }, and the set P consists of the
following productions

– Ai,j → 1Ai,j+1 whenever xj ∈ Ci and ¬xj 6∈ Ci, for 1 ≤ i ≤ m, 1 ≤ j ≤ n−1,
– Ai,j → 0Ai,j+1 whenever xj 6∈ Ci and ¬xj ∈ Ci, for 1 ≤ i ≤ m, 1 ≤ j ≤ n−1,
– Ai,j → 1Ai,j+1 whenever xj 6∈ Ci and ¬xj 6∈ Ci, for 1 ≤ i ≤ m, 1 ≤ j ≤ n−1,
– Ai,j → 0Ai,j+1 whenever xj 6∈ Ci and ¬xj 6∈ Ci, for 1 ≤ i ≤ m, 1 ≤ j ≤ n−1,
– Ai,n → 1 whenever xn ∈ Ci and ¬xn 6∈ Ci, for 1 ≤ i ≤ m,
– Ai,n → 0 whenever xn 6∈ Ci and ¬xn ∈ Ci, for 1 ≤ i ≤ m,
– Ai,n → 1 whenever xn 6∈ Ci and ¬xn 66∈ Ci, for 1 ≤ i ≤ m,
– Ai,n → 0 whenever xn 6∈ Ci and ¬xn 66∈ Ci, for 1 ≤ i ≤ m,

where, for all i ∈ {1, 2, . . . ,m}, we set Ai,1 := S. Note that the above reduction
from 3-DNF formulae to context-free grammars is essentially the same as the
reduction to regular expressions presented in [14].

The following proposition expresses that the number of productions in the
above constructed grammar Gϕ is polynomial in the number of clauses occurring
in ϕ. As a consequence, the above reduction is polynomial time computable.

Proposition 11. Let ϕ be a formula in 3-DNF with n variables and m clauses.
Then |Gϕ| ≤ 6m2, for X ∈ Γ , where Gϕ is the grammar defined above which
can be constructed in deterministic polynomial time.

The construction of Gϕ also fulfills the property that a word w ∈ {0, 1}n is
derivable in Gϕ if and only if w—interpreted as a truth assignment—satisfies the
formula ϕ, i.e., L(Gϕ) = {w ∈ {0, 1}n | w |= ϕ }. An immediate consequence of
the following proposition is that Gϕ generates all words of length n over {0, 1}
if and only if ϕ is a tautology. In other words, the reduction from the tautology
problem to the fixed length universality problem is correct.

Proposition 12. Let ϕ be a formula in 3-DNF with n variables. Then, for all
words w ∈ {0, 1}n, it holds that w ∈ L(Gϕ) if and only if w |= ϕ.

The next step in our proof strategy is the construction of a grammar that
generates the left quotient of a word with a finite language from a given grammar
that generates this language. Before we can do this, we need two prerequisites.
The first lemma states that any finite language can be generated by a grammar
which has the property that the right-hand side of each of its productions is not
longer than the length of a longest word in the language.

Lemma 13. Let X ∈ Γ , G be an X-grammar generating a finite language, and
` := max{ |w| | w ∈ L(G) }. Then there is an X-grammar G′ where all right-hand
sides of productions are of length at most ` s.t. L(G′) = L(G) and |G′| ≤ |G|.

Next, a context-free grammar G = (N,Σ,P, S) is said to be in binary normal
form (2NF) if the right-hand side of all productions in P has length at most two,
i.e., for all A→ α ∈ P it holds that |α| ≤ 2. Then the second lemma shows that
this assumption does not constitute a major restriction.

Lemma 14. Let X ∈ Γ and G be an X-grammar generating a finite language.
Assume that ` := max{ |w| | w ∈ L(G) }. Then there is an X-grammar G′ in
binary normal form such that L(G′) = L(G) and |G′| ≤ |G| · `.

Now that we have collected all necessary ingredients, we can finally prove the
result on the left quotient of a word and a finite language. The proof uses both
Lemmata 13 and 14 and a triple like construction from [11] that is similar to
the well known triple construction for the intersection of a context-free language
with a regular set. The theorem reads as follows:

Theorem 15. Let X ∈ Γ and G be an X-grammar generating a finite language
whose longest word has length `. Then, for every word w ∈ Σ∗, there is an
X-grammar G′ with L(G′) = w−1L(G) and |G′| ∈ O(|G| · |w|3 · `).

In the remainder of this section, we prove our main result on the inapprox-
imability of grammatical descriptions of finite languages. The following result
expresses upper and lower bounds on the X-complexity of the language Lϕ,
for X ∈ Γ . In the case of context-free grammars, a constant number of pro-
ductions suffices to generate Lϕ, however, when we turn to regular and linear
grammars, the upper bound jumps to a linear number (w.r.t. the number of vari-
ables occurring in ϕ). On the other hand, if ϕ is not a tautology, then we obtain
a lower bound on the X-complexity of Lϕ, for X ∈ Γ , which is polynomial in
the number of variables occurring in ϕ. The value c in the next lemma refers to
the constant c used in the construction of Lϕ.

Lemma 16. Let X ∈ Γ and let ϕ be a formula in 3-DNF over n variables. Then
(1) Xc(Lϕ) = O(n) if ϕ is a tautology and (2) Xc(Lϕ) = Ω(nc−4), otherwise.

Now, we are ready to prove the main result of this paper:

Proof (of Theorem 10). In Proposition 11, we have obtained an upper bound
on the number of productions in a grammar describing Lϕ in terms of m, the
number of clauses in ϕ. The gap-introducing part of our reduction is of course
Lemma 16, which is formulated in terms of n, the number of variables in ϕ.
In order to show our inapproximability result, we need to establish a relation
between the number of clauses and variables in the formula ϕ. For instance,
it is known that the 3-SAT problem remains NP-complete if we require that
every variable occurs exactly four times [15]. This result of course implies coNP-
completeness of the corresponding 3-DNF tautology problem, where the number
of clauses is linear in the number of variables. So, without loss of generality, we
will assume that the number of clauses in our instance of the 3-DNF tautology
problem is linear in the number of variables. Now, we are finally in the position
to fix the constant c, by choosing c = 6. Recall the definition of Lϕ as

Lϕ = L(Gϕ) · {&} · {0, 1, $,#}3c·dlogne+2 ∪ {0, 1}n · {&} · Tc·dlogne.

From Proposition 11, we deduce that for the grammar Gϕ it holds that |Gϕ| =
O(m2) = O(n2). When we combine the above upper bound with the upper

bounds from Theorem 2 and the straightforward fact that Xc(Σ`) ≤ |Σ| · ` —
using the bounds for union and concatenation (Theorems 3 and 6, respectively),
we obtain that Lϕ admits a regular grammar with p productions such that

p = O(n2) +O(1) +O(log n) +O(n) +O(1) +O(nc) = O(n6).

Towards a contradiction, assume that there is a polynomial time approxima-
tion algorithm A for the minimal number of productions problem within o(p1/6).
Then A could be used to decide in polynomial time whether ϕ is a tautology
as follows: if ϕ is a tautology, then, by Lemma 16, Xc(Lϕ) = O(n), for X ∈ Γ ,
otherwise, that is, if ϕ is not a tautology, then, by Lemma 16, we deduce that,
for X ∈ Γ , it holds that Xc(Lϕ) = Ω(nc−4) = Ω(n2). Consequently, the putative
approximation algorithm A returns a grammar size of at most o(p1/6) · O(n) =
o(n2) if and only if ϕ is a tautology. However, this solves the coNP-hard 3-DNF
tautology problem in deterministic polynomial time, which implies P = NP. This
shows that the X-complexity, for X ∈ Γ , of a given finite language cannot be
approximated within a factor of o(p1/6), unless P = NP. ut

6 The Smallest Grammar Problem for Finite Languages

The smallest grammar problem asks for the smallest context-free grammar that
generates a single given word and its decision version has been shown to be NP-
complete for unbounded [6] and fixed alphabets of size at least 24 [5]. In [6], it was
also shown that the smallest grammar problem (w.r.t. unbounded alphabets) has
an approximation ratio of at least 8569

8568 , unless P = NP. We will consider—w.r.t.
fixed alphabets of size at least 5—another formulation of the smallest grammar
problem that asks for the smallest grammar that generates a given finite language
instead of just a single word. The authors in [6] defined the size of a grammar as
the sum of the lengths of the right-hand sides of all productions. They slightly
deviate from the classical definition from [12], which reads as follows: the size
of an X-grammar G = (N,Σ,P, S) is |G|s =

∑
A→α∈P (2 + |α|). The minimal

X-size of a finite language L is

Xs(L) = min{ |G|s | G is an X-grammar with L = L(G) }.

The lower bound on the language Tn in terms of the X-complexity, for X ∈ Γ ,
immediately implies a lower bound of Xs(Tn) = Ω(2n) on the size of a minimal
X-grammar generating Tn, since we can assume that the grammar is ε-free.
This bound will suffice for our purpose. Along similar lines as in the proof of
Lemma 16, we get a linear upper bound on the minimal grammar size for Lϕ if ϕ
is a tautology. However, the lower bound for the minimal grammar size of Lϕ if ϕ
is not a tautology asymptotically coincides with the one obtained for the minimal
number of productions. Thus, Lemma 16, remains valid in case Xc is replaced
by Xs. Then, we get an inapproximability result analogous to Theorem 10:

Theorem 17. Let X ∈ Γ . Given an X-grammar of size s generating a finite
language L, it is impossible to approximate Xs(L) within a factor of o(s1/7),
unless P = NP.

Observe that our reduction scheme is robust enough to yield the same in-
approximability result if we define the grammar size as in [6], i.e., as the sum
of the right-hand sides of all productions. Thus, the result of Theorem 17 also
holds for the alternative definition of grammar size.

References

1. B. Alspach, P. Eades, and G. Rose. A Lower-bound For the Number of Productions
Required For A Certain Class of Languages. Discrete Appl. Math., 6:109–115, 1983.

2. W. Bucher. A Note on a Problem in the Theory of Grammatical Complexity.
Theoret. Comput. Sci., 14(3):337–344, 1981.

3. W. Bucher, H. A. Maurer, and K. Culik II. Context-Free Complexity of Finite
Languages. Theoret. Comput. Sci., 28(3):277–285, 1983.

4. W. Bucher, H. A. Maurer, K. Culik II, and D. Wotschke. Concise Description of
Finite Languages. Theoret. Comput. Sci., 14(3):227–246, 1981.

5. K. Casel, H. Fernau, S. Gaspers, B. Gras, and M. L. Schmid. On the Complex-
ity of Grammar-Based Compression over Fixed Alphabets. In I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, editors, Proceedings of the 43rd In-
ternational Colloquium on Automata, Languages, and Programming, volume 55 of
LIPIcs, pages 122:1–122:14, Rome, Italy, 2016. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany.

6. M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
S. Shelat. The Smallest Grammar Problem. IEEE Trans. Inf. Theory., 51(7):2554–
2576, 2005.

7. J. Dassow. Descriptional Complexity and Operations—Two Non-Classical Cases.
In G. Pighizzini and C. Câmpeanu, editors, Proceedings of the 19th International
Workshop on Descriptional Complexity of Formal Systems, number 10316 in LNCS,
pages 33–44, Milano, Italy, 2017. Springer.

8. J. Dassow and R. Harbich. Production Complexity of Some Operations on Context-
Free Languages. In M. Kutrib, N. Moreira, and R. Reis, editors, Proceedings of
the 14th Workshop on Descriptional Complexity of Formal Systems, number 7386
in LNCS, pages 141–154, Braga, Portugal, 2012. Springer.

9. Sebastian Eberhard and Stefan Hetzl. On the compressibility of finite languages
and formal proofs. Information and Computation, 259:191–213, 2018.

10. Y. Filmus. Lower bounds for context-free grammars. Inform. Process. Lett.,
111(18):895–898, 2011.

11. S. Ginsburg and E. H. Spanier. Quotients of Context-Free Languages. J. ACM,
10(4):487–492, 1963.

12. M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
13. M. Holzer and M. Kutrib. Descriptional Complexity—An Introductory Survey. In

C. Mart́ın-Vide, editor, Scientific Applications of Language Methods, pages 1–58.
World Scientific, 2010.

14. H. B. Hunt, III. On the time and tape complexity of languages. Ph.D. thesis,
Cornell University, Ithaca, New York, USA, 1973.

15. C. A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85–89, 1984.

16. Zs. Tuza. On the Context-Free Production Complexity of Finite Languages. Dis-
crete Appl. Math., 18(3):293–304, 1987.

