
DCFS2008DCFS2008 Des
riptional Complexity of Formal Systems(Draft) Deadline for submissions: April 7 27, 2008(stri
t)Final versions: June 25, 2008Language Operations with Regular Expressions ofPolynomial SizeHermann Gruber(A) Markus Holzer(B)

(A)Institut für Informatik, Ludwig-Maximilians-Universität Mün
hen,Oettingenstraÿe 67, D-80538 Mün
hen, Germanyemail: gruberh�t
s.ifi.lmu.de
(B)Institut für Informatik, Te
hnis
he Universität Mün
hen,Boltzmannstraÿe 3, D-85748 Gar
hing bei Mün
hen, Germanyemail: holzer�in.tum.deAbstra
t. This work deals with questions regarding to what extentregularity-preserving language operations a�e
t the des
riptional
omplexityof regular expressions. Some language operations are identi�ed whi
h are fea-sible for regular expressions in the sense that the result of the operation
an berepresented as a regular expression of size polynomial in that of the operands.We prove that taking language quotients, in parti
ular the pre�x and su�x
losures, of a regular set
an in
ur at most a quadrati
 blow-up on the requiredexpression size. The
ir
ular shift operation
an
ause only a
ubi
 in
reasein size; for the latter operation, at least an almost quadrati
 blow-up
an bene
essary in the worst
ase.Keywords: regular expressions, derivatives, language quotient,
y
li
 shift,
ir
ular shift1 Introdu
tionIn the last 20 years, a large body of resear
h on the des
riptional
omplexity of �niteautomata has been developed. To the authors' knowledge, the �rst systemati
 attemptto start a parallel development for the des
riptional
omplexity of regular expressionswas presented by Ellul et al. [7℄ at this workshop, in 2002. In parti
ular, they raisedthe question of determining how basi
 language operations su
h as
omplementationand interse
tion a�e
t the required regular expression size. For the interse
tion andshu�e operation, exponential lower bounds are known, and
omplementation
an evenin
ur a doubly-exponential blow-up [8, 9℄. In [9℄ it was shown that the star heightof a regular language is at most logarithmi
 in the minimum regular expression size,and lower bounds are proved by �nding families of languages for whi
h the respe
tivelanguage operations give rise to a dramati
 in
rease in star height. In
ontrast, it is wellknown that taking language quotients does not in
rease the star height [6℄. This andsimilar language operations appear to be a natural testing ground for deepening ourunderstanding of the des
riptional
omplexity of regular expressions: Either one has to�nd some new lower bound te
hniques, or one has to �nd a nontrivial implementation ofthese operations on regular expressions, or both�a straightforward pro
edure would be

2 H. Gruber and M. Holzerto
onvert the expression into a �nite automaton, implement the operation on a �niteautomaton, and
onvert ba
k to a regular expression using state elimination. Yet thatlast step
an in
ur an exponential blow-up in general, even over binary alphabets [9℄.Here, we give polynomial upper bounds for the required expression size resultingfrom taking language quotients and
ir
ular shift. Des
riptional
omplexity aspe
ts ofthese operations were already studied in [1, 17℄ for the
ir
ular shift and [12, 15℄ forlanguage quotients�the latter two referen
es
onsider deterministi
 �nite automatawith multiple start states, but the results easily translate to state
omplexity resultsfor (left) quotients. The basi
 idea is to implement the operation for the spe
ial
aseof linear expressions [2℄
alled single-o

urren
e regular expressions in [8℄. These areexpressions in whi
h every alphabeti
 symbol o

urs exa
tly on
e, whi
h makes it easierto deal with as they
an des
ribe only lo
al languages. To
over the general
ase, westudy the interplay of the operations with length-preserving homomorphisms.2 Basi
 de�nitionsWe re
all some basi
 notions in formal language theory�for a thorough treatment,the reader might want to
onsult a textbook su
h as [13℄. In parti
ular, let Σ be a�nite alphabet and Σ∗ the set of all words over the alphabet Σ, in
luding the emptyword λ. A (formal) language over the alphabet Σ is a subset of Σ∗. Apart from theregular operations on languages, namely (�nite) union,
atenation, and star, we brie�yre
all the following operations on languages: The reversal of a language L, denotedby LR,
onsists of all words whi
h, when read ba
kwards yield a word in L. The (left)derivative of a language L with respe
t to a word w, written as w−1L, is de�ned as
{x | wx ∈ L }, the (left) quotient of L with respe
t to a set of words W , denotedby W−1L, is de�ned as ⋃

w∈W w−1L. The spe
ial
ase W = Σ∗ is known as the su�x
losure of L and denoted by suf(L). We
an perform similar operations when readingwords from right to left: The right derivative of a language L with respe
t to a word
w is de�ned as { v | vw ∈ L }. This operation
an be expressed using derivatives andreversal as ((wR)−1LR)R; right quotients and the pre�x
losure pre(L) are de�ned inan analogous manner. The
ir
ular (or
y
li
) shift of a language, denoted by �(L), isgiven by {xw | wx ∈ L }.Let Σ be an alphabet. The regular expressions over Σ are de�ned re
ursively in theusual way:1 ∅, λ, and every letter a with a ∈ Σ is a regular expression; and when sand t are regular expressions, then (s + t), (s · t), and (s)∗ are also regular expressions.The language denoted by a regular expression r, denoted by L(r), is de�ned as follows:
L(∅) = ∅, L(λ) = {λ}, L(a) = {a}, L(s + t) = L(s) ∪ L(t), L(s · t) = L(s) · L(t),and L(s∗) = L(s)∗. Two regular expressions are
alled equivalent if they denote thesame language. For a regular expression r, de�ne λ(r) = λ if λ ∈ L(r), and λ(r) = ∅otherwise. Likewise, for a language L, we de�ne λ(L) analogously.1For
onvenien
e, parentheses in regular expressions are sometimes omitted and the
on
atena-tion is simply written as juxtaposition. The priority of operators is spe
i�ed in the usual fashion:
on
atenation is performed before union, and star before both produ
t and union.

Language Operations with Polynomial Size Expressions 3The size or alphabeti
 width of a regular expression r over the alphabet Σ, denotedby awidth(r), is de�ned as the total number of o

urren
es of letters of Σ in r. Fora regular language L, we de�ne its alphabeti
 width, awidth(L), as the minimumalphabeti
 width among all regular expressions des
ribing L. The star height of aregular expression r, denoted by h(r) is a stru
tural
omplexity measure indu
tivelyde�ned by(I) h(r) = 0, for r ∈ Σ ∪ {∅, λ},(II) h(s · t) = h(s + t) = max (h(s), h(t)), and(III) h(r∗) = 1 + h(r).The star height of a regular language L is then de�ned as the minimum star heightamong all regular expressions des
ribing L.Let r be a regular expression. Following [14℄, we say that r is redu
ed if all of thefollowing
onditions hold: If r
ontains the symbol ∅, then r = ∅; the expression r
on-tains no subexpression of the form st or ts, satisfying L(s) = {λ} and no subexpressionof the form (s∗)∗; if r
ontains a subexpression of the form s+t or t+s with L(s) = {λ},then λ /∈ L(t); if r
ontains a subexpression of the form s∗, then L(s) 6= {λ}. Other-wise r is
alled redu
ible. The above de�nition suggests some rewriting rules, su
h asrepla
ing s + ∅ with s, and a few more rules, see [14℄. By iteratively applying the rulesto all subexpressions until none is appli
able, we
an redu
e every regular expressionto a redu
ed one.Clearly, for every regular expression there exists an equivalent redu
ed regular ex-pression with alphabeti
 width and star height no larger than the original expression.We will need the following relation between star height and alphabeti
 width of redu
edregular expressions:Lemma 1. Let r be a redu
ed regular expression. Then h(r) ≤ awidth(r).Proof : First,
onsider the
ases L(r) = ∅ and L(r) = {λ}. It is easy to see from thede�nition of redu
ed expressions that we must have r = ∅ and r = λ, respe
tively, andthe
laim holds in these
ases. These are the only redu
ed expressions with alphabeti
width 0.For the
ase awidth(r) ≥ 1, we prove the following
laim by indu
tion on thetotal number of o

urren
es of operators in r: If the redu
ed expression r is a starredexpression, then h(r) ≤ awidth(r), otherwise h(r) ≤ awidth(r) − 1.If r
ontains no operators at all, then the statement
learly holds. To do the indu
-tion step, assume the statement holds for all regular expressions with at most m o

ur-ren
es of operators. In the
ases r = s+ t and r = s ·t, we have h(r) = max (h(s), h(t)),and the statement holds by indu
tion hypothesis. If r is of the form (s)∗, then s isnot a starred expression, sin
e r is redu
ed. Furthermore, L(s)
an be neither emptynor equal to {λ}, sin
e otherwise L(r) = {λ}, and r would not be redu
ed. Thusby indu
tion assumption, h(s) ≤ awidth(s) − 1. Sin
e awidth(r) = awidth(s) and
h(r) = h(s) + 1, the
laim also holds in this
ase, and the proof is
ompleted. �

4 H. Gruber and M. Holzer3 Linear expressionsLet r be a regular expression over the alphabet Σ. Re
all that the alphabeti
 widthof r, denoted by awidth(r), is the total number of o

urren
es of alphabeti
 symbolsin r. We refer to the ith alphabeti
 letter in r as the ith position. A regular expression
r over an alphabet Σ = {a1, a2, . . . , an} is
alled a linear expression if and only if
|Σ| = awidth(r) and the ith position in r is the symbol ai. In this
ase, there is astraightforward bije
tion between positions and alphabet symbols, and here we shalloften denote the used alphabet by Pr.For two alphabets Σ and Γ, a homomorphism h : Σ∗ → Γ∗ is length-preservingor also letter-to-letter if it maps all symbols from Γ to symbols from Σ. It is easy tosee that ea
h regular expression r is the image of a unique linear expression r undera length-preserving homomorphism: That homomorphism maps the symbol ai to the
ith position of r. This homomorphism will be denoted by ℓr or just ℓ in the
ase r isunderstood from the
ontext.Example 2. For the regular expression r = ((ab)∗a)∗, the
orresponding linear ex-pression is r = ((a1a2)

∗a3)
∗, and the length-preserving homomorphism whi
h maps rto r is given by ℓr = {a1 7→ a, a2 7→ b, a3 7→ a}. �Let Σ be an alphabet. A language L ⊆ Σ∗ is lo
al if it
an be written as L =

λ(L) ∪ ((PΣ∗ ∩ Σ∗S) \ (Σ∗NΣ∗)), for some P, S ⊆ Σ and N ⊆ Σ2. Note that in thisde�nition, we permit the empty word to be a member of a lo
al language. The
on
eptof lo
al languages is related to linear expressions as follows [3℄:Theorem 3. For every linear expression r, the language L(r) is lo
al.We brie�y re
all the de�nition of the
anoni
al derivative da(r) of a linear expres-sion r with respe
t to an alphabet symbol a, in the reformulation given in [5, Prop. 6℄:De�nition 4. Let r be a linear expression and let a be a symbol in Pr. Then the
anoni
al derivative da(r) is
omputed re
ursively by applying the following rules and�nally redu
ing the expression:
da(a) = λ

da(s + t) =

{

da(s) if da(s) 6= ∅

da(t) otherwise
da(s · t) =

{

da(s) · t if da(s) 6= ∅

da(t) otherwise
da(s

∗) = da(s) · s
∗And da(r) = ∅ in all
ases not
overed above.The study [5℄ relates the
anoni
al derivatives of a linear expression to the originalde�nition of derivatives for general regular expressions due to Brzozowski [4℄, and to

Language Operations with Polynomial Size Expressions 5the
ontinuations introdu
ed by Berry and Sethi [2℄. The results from [5℄ relevant toour
ontext are summarized in the following
hara
terization:Theorem 5. Let r be a linear expression, let a be a symbol in Pr, and u a word over Pr.If the set (ua)−1L(r) is nonempty, then it is des
ribed by the
anoni
al derivative da(r).Thus for a redu
ed linear expression r, the
anoni
al derivative da(r) des
ribes thelanguage quotient (P ∗
r a)−1L(r).Example 6. Consider again the linear expression r = ((ab)∗c)∗ from Example 2; wenow use the alphabet {a, b, c} instead of {a1, a2, a3} to in
rease readability. Then

da(r) = da((ab)∗c) · ((ab)∗c)∗ = da((ab)∗) · c · ((ab)∗c)∗

= da(ab) · (ab)∗ · c · ((ab)∗c)∗ = da(a) · b · (ab)∗ · c · ((ab)∗c)∗

= λ · b · (ab)∗ · c · ((ab)∗c)∗ = b(ab)∗c((ab)∗c)∗.A similar
omputation yields db(r) = (ab)∗c((ab)∗c)∗ and dc(r) = ((ab)∗c)∗. �Now we generalize the above notion from symbols a ∈ Pr to sets of symbols A ⊆ Pras follows:De�nition 7. Let r be a redu
ed linear expression and let A be a set of symbol in Pr.Then the
anoni
al derivative dA(r) is
omputed re
ursively by applying the followingrules and �nally redu
ing the expression:
dA(a) = λ if a ∈ A

dA(s + t) = dB(s) + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s · t) = dB(s) · t + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s∗) = dA(s) · s∗And dA(r) = ∅ in all
ases not
overed above.A straightforward indu
tion shows that the de�nition works as expe
ted:Lemma 8. Let r be a linear expression and A a set of symbols in r. Then L(dA(r)) =
⋃

a∈A L(da(r)). �Next, we estimate the size of the expressions dA(r).Lemma 9. Let r be a redu
ed linear expression of alphabeti
 width n ≥ 1 and starheight h, and let A be a subset of Pr. Then the expression dA(r) has size at most
n2−n

2 + hn = O(n2).Proof : First, re
all that Lemma 1 proves that the
laimed size is in O(n2). We provethe
laim by indu
tion on the depth d ≥ 0 of the syntax tree of r. In the
ase d = 0,then with awidth(r) ≥ 1 we must have r = a for some a ∈ Pr, and the
laim
learlyholds. To do the indu
tion step, we
onsider three
ases.

6 H. Gruber and M. HolzerIf r is of the form s + t, then dA(r) is the expression obtained from redu
ing
dB(s) + dA\B(t). Let awidth(s) = k and awidth(t) = n − k, for some k ≥ 0. Byindu
tion hypothesis we obtain that

awidth(dA(r)) ≤
k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k).By rearranging terms, we get

k2 − k + (n − k)2 − (n − k)

2
=

n2 − n

2
+ k(k − n) ≤

n2 − n

2
,and thus awidth(dA(r)) is bounded above by n2−n

2 + hn in this
ase.If r is of the form s · t, then dA(r) is the expression obtained from redu
ing theexpression dB(s) · t + dA\B(t). Sin
e r is redu
ed, both s and t have alphabeti
 widthat least 1. Letting k ≥ 1 denote the alphabeti
 width of s and n − k the alphabeti
width of t, we obtain by indu
tion hypothesis that
awidth(dA(r)) ≤

k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k) + n − k.By a similar
omputation as for the previous
ase, the right hand side in the aboveinequality is still bounded above by n2−n

2 + hn.Finally, if r is of the form s∗, then the depth of s is smaller than that of r, and byindu
tion assumption awidth(dA(r)) ≤ awidth(dA(s))+ n ≤ n2−n
2 + (h− 1)n + n. This
overs all possible
ases, and the proof is
ompleted. �We remark that our notion of dA(r) di�ers from the one given in [5℄ in that ourde�nition yields expressions of size O(n2), while de�ning dA as ∑

a∈A da(r) would bemu
h more redundant. It should be said that the a
tual size of these expressions isimmaterial in the
ontext of [5℄, but is important in the present paper.Now we take a
loser look at lo
al languages. The following lemma is easy to seefrom the de�nition of lo
al languages:Lemma 10. If L ⊆ Σ∗ is a lo
al language, then for ea
h a ∈ Σ holds:
u1 · a · v1 ∈ L and u2 · a · v2 ∈ L implies u1 · a · v2 ∈ L. �For a lo
al language L and an alphabet symbol a, we may thus de�ne da(L) asthe language quotient da(L) = (Σ∗a)−1L. Likewise, for a set of symbols A de�ne

dA(L) = (Σ∗A)−1L. This operator overloading is perfe
tly
onsistent with the useof the notation da(r) to denote the
anoni
al derivative of a linear expression r withrespe
t to an alphabet symbol a: By Theorem 5, we have L(da(r)) = da(L(r)).The above
hara
terization allows us to provide a neat formula for left quotients oflo
al languages:Lemma 11. Let L ⊆ Σ∗ be a lo
al language and let W ⊆ Σ∗ an arbitrary language.De�ne A = { a ∈ Σ | W ∩ pre(L) ∩ Σ∗a 6= ∅ }. Then
W−1L = λ(W) · L ∪

⋃

a∈A

da(L) = λ(W) · L ∪ dA(L).

Language Operations with Polynomial Size Expressions 7Proof : First of all, it follows from the de�nition of language quotients that W−1L =
(W ∩ pre(L))−1L. Se
ond, if we de
ompose the set W as λ(W) ∪

⋃

a∈Σ(W ∩ Σ∗a), weobtain
W−1L = λ(W)−1 · L ∪

⋃

a∈Σ

(W ∩ Σ∗a ∩ pre(L))−1L

= λ(W) · L ∪
⋃

a∈A

(W ∩ Σ∗a ∩ pre(L))−1L,
(1)sin
e ⋃

a∈Σ\A(W ∩ Σ∗a ∩ pre(L))−1L = (∅)−1L = ∅. Finally, for a ∈ A, let ua beany word in W ∩ Σ∗a ∩ pre(L). Then from Lemma 10 one
an readily dedu
e that
(ua)−1L = (Σ∗a ∩ pre(L))−1L = (Σ∗a)−1L = da(L). Thus (W ∩ Σ∗a ∩ pre(L))−1L =
da(L). By putting this into Equation (1), the result follows. �Also for the
ir
ular shift of lo
al languages, we obtain a ni
e
hara
terization:Lemma 12. Let L ⊆ Σ∗ be a lo
al language. Then for the
ir
ular shift �(L) holds

�(L) = λ(L) ∪
⋃

a∈Σ

a · da(L) · (da(L
R))R.Proof : The
ir
ular shift of any language L
an by de�nition be written as �(L) =

λ(L) ∪
⋃

a∈Σ L(a), with
L(a) = { awv | v,w ∈ Σ∗, vaw ∈ L }.In parti
ular, if L is lo
al, Lemma 10 tells us that there
annot be any dependen
iesbetween the subwords v and w in the de�nition of L(a). Thus L(a)
an be rewrittenas
L(a) =

⋃

{ v∈Σ∗|va·da(L)⊆L }

a · da(L) · v,and sin
e lo
al languages are readily seen to be
losed under reversal, redoing the sametri
k for the reversed language yields L(a) = a · da(L) · da(L
R)R, as desired. �Example 13. We also
ompute the
ir
ular shift of the language L = L(r) in our run-ning example. By Lemma 12, we
an write �(L) as λ(L)∪

⋃

a∈Σ a·da(L)·(da(LR))R. Thesets da(L), db(L) and dc(L) are denoted by the expressions da(r) = b(ab)∗c((ab)∗c)∗,
db(r) = (ab)∗c((ab)∗c)∗, and dc(r) = ((ab)∗c)∗, respe
tively, whi
h were
omputed inExample 6. In a similar manner, we obtain for rR = (c(ba)∗)∗ the
anoni
al deriva-tives da(r

R) = (ba)∗(c(ba)∗)∗, db(r
R) = a(ba)∗(c(ba)∗)∗, and dc(r

R) = (ba)∗(c(ba)∗)∗.We have λ(L) = λ, and straightforward rules for implementing the reversal of regularexpressions yield ((ba)∗(c(ba)∗)∗)R = ((ab)∗c)∗(ab)∗ as well as (a(ba)∗(c(ba)∗)∗)R =
((ab)∗c)∗(ab)∗a. Thus a regular expression denoting �(L(r)) is given by

λ + a · b(ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗

+ b · (ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗a + c · ((ab)∗c)∗ · ((ab)∗c)∗(ab)∗.

8 H. Gruber and M. HolzerFinally, we note that in an a
tual implementation the
omputational overhead for thetwo reversal operations
arried out here
ould be saved by de�ning the
on
ept of�
anoni
al right derivatives� using rules analogous to those for
omputing
anoni
al(left) derivatives in De�nition 4. �These
hara
terizations immediately lend themselves to an implementation of quo-tient and
ir
ular shift operations on linear expressions via
anoni
al derivatives. UsingLemma 9, we
an estimate the resulting expression size as follows:Theorem 14. Let r be a linear expression of size n, and let L = L(r). Then for setof words W ⊆ P ∗
r , there is a regular expression of size O(n2) denoting W−1L, and aregular expression of size O(n3) denoting the
ir
ular shift �(L). �4 The General CaseThe above results allow us to
ompute from a given linear expression relatively smallregular expressions denoting a language quotient or the
ir
ular shift of the denotedlanguage. In this se
tion, we investigate the intera
tion of (length-preserving) homo-morphisms with the language operations under
onsideration to transfer the obtainedresults to the general
ase. The easier
ase is a language operation that
ommutes withlength-preserving homomorphisms. This is the
ase for the
ir
ular shift:Lemma 15. Let ℓ be a length-preserving homomorphism, and let L ⊆ Σ∗ be a lan-guage. Then �(ℓ(L)) = ℓ(�(L)).Proof : Sin
e both the homomorphism and
ir
ular shift operation
ommute with tak-ing �nite and in�nite unions, it su�
es to show the
laim for the
ase L
ontains asingle word w = a1a2 . . . ak. In the
ase k ≤ 1, we have L = �(L), and the
laim istrivially true. So assume k ≥ 2. Then

ℓ(�({w})) = {ℓ(w)} ∪ ℓ ({ aj . . . aka1a2 · · · aj−1 | 2 ≤ j ≤ k })

= {ℓ(w)} ∪ { ℓ(aj) . . . ℓ(ak)ℓ(a1)ℓ(a2) . . . ℓ(aj−1) | 2 ≤ j ≤ k }.Now let x = b1b2 . . . bk, with bi = ℓ(ai). Then
�({ℓ(w)}) = {ℓ(w)} ∪ { bj . . . bkb1b2 . . . bj−1 | 2 ≤ j ≤ k }

= {ℓ(w)} ∪ { ℓ(aj) . . . ℓ(ak)ℓ(a1)ℓ(a2) . . . ℓ(aj−1) | 2 ≤ j ≤ k },thus proving the desired equality. �The next lemma shows how homomorphisms intera
t with taking left derivatives.Lemma 16. Let L ⊆ Σ∗ be a regular language, let ℓ : Σ∗ → Γ∗ be a length-preservinghomomorphism, and let w ∈ Γ∗. Then w−1ℓ(L) =
⋃

x∈ℓ−1(w) ℓ(x−1L).Proof : Let A = (Q,Σ, δ,Q0, F) be a nondeterministi
 �nite automaton (possibly withmultiple start states) a

epting L, in the standard notation of [13℄. We obtain a

Language Operations with Polynomial Size Expressions 9nondeterministi
 �nite automaton B a

epting ℓ(L) by a standard
onstru
tion: Let
B = (Q,Γ, δ′, Q0, F) with δ′(q, a) =

⋃

b∈ℓ−1(a) δ(q, b), for every q ∈ Q and every a ∈ Γ.For an automaton C a

epting w−1ℓ(L), we perform the standard quotient
onstru
-tion: Let C = (Q,Γ, δ′, Q′
0, F), with Q′

0 =
⋃

q0∈Q0
δ′(q0, w).To obtain a �nite automaton a

epting the language ⋃

x∈ℓ−1(w) x−1L, take D =

(Q,Σ, δ,Q′
0, F), whi
h is obtained from A by repla
ing Q0 with the start states of C.Note that for the set Q′

0 holds
Q′

0 =
⋃

q0∈Q0

δ′(q0, w) =
⋃

x∈ℓ−1(w)

⋃

q0∈Q0

δ(q0, x),so this automaton indeed a

epts the quotient ⋃

x∈ℓ−1(w) x−1L. To get an automatona

epting the image under ℓ of this language, we repla
e in D, similar to above, thetransition fun
tion δ with δ′ and
hange the input alphabet to Γ. But then we endup with the automaton (Q,Γ, δ′, Q′
0, F), whi
h is identi
al to the automaton C. Thus

w−1ℓ(L) =
⋃

x∈ℓ−1(w) ℓ(x−1L) as desired. �Now we are ready to state the main result of this paper:Theorem 17. Let r be a regular expression of size n denoting the language L ⊆ Σ∗,and let W ⊆ Σ∗. Then there is a regular expression of size O(n2) denoting W−1L anda regular expression of size O(n3) denoting �(L).Proof : Let r be the linear expression for r, and ℓ = ℓr be the homomorphism whi
hmaps r to r. Sin
e ℓ is length preserving, every word w ∈ Σ∗ is in ℓ(Pr)
∗, and thus, byLemma 16, we have

w−1ℓ(L(r)) =
⋃

x∈ℓ−1(w)

ℓ(x−1L(r)).This readily generalizes to sets of words, and we obtain
W−1ℓ(L(r)) =

⋃

w∈W

⋃

x∈ℓ−1(w)

ℓ(x−1L(r)) = ℓ(
⋃

x∈ℓ−1(W)

x−1L(r)) = ℓ
(

(ℓ−1(W))−1L(r)
)The last one of the above expressions is the image under ℓ of a quotient of r. ByTheorem 14, the latter language
an be des
ribed by a regular expression of size O(n2),and applying the map ℓ does not in
rease the alphabeti
 width. This shows that

awidth(W−1L) = O(n2). For the
ir
ular shift, re
all from Theorem 14 that �(L(r))has alphabeti
 width in O(n3). By Lemma 15, �(L(ℓ(r))) = ℓ(�(L(r))), and, as notedbefore, applying a length-preserving homomorphism does not in
rease the alphabeti
width. �Example 18. From Example 13 we dedu
e that the
ir
ular shift of L(r) is simply
�(L(r)) = λ + a · b(ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗

+ b · (ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗a + a · ((ab)∗a)∗ · ((ab)∗a)∗(ab)∗,by applying the length-preserving homomorphism ℓ = {a 7→ a, b 7→ b, c 7→ a} to theregular expression �(L(r)). �

10 H. Gruber and M. Holzer
0 1

a

b
2

a

b
3

a

b
4

a

bFigure 1. A �nite automaton a

epting L4Currently, we do not know whether these upper bounds have the right order ofmagnitude. At least, we found an almost quadrati
 lower bound on the in
rease ofalphabeti
 width for the
ir
ular shift operation:Theorem 19. There exist in�nitely many regular languages Lm over a binary alphabetsu
h that Lm admits a regular expression of alphabeti
 width m, but every regularexpression des
ribing �(Lm) has alphabeti
 width at least Ω
(

m2

log2 m

).Proof : Our witness language is the language Lm for whi
h in [17℄ an Ω(m2) lowerbound on the number of states needed by a nondeterministi
 �nite automaton in orderto a

ept �(Lm) was proved. The language Lm
ontains all words w over the alpha-bet {a, b} su
h that |w|a − |w|b = m − 1 and moreover for every pre�x x of w holds
0 ≤ |x|a−|x|b ≤ m−1. A �nite automaton A4 a

epting L4 is depi
ted in Figure 1. Bya straightforward generalization of the pattern of the depi
ted automaton, we obtainan m+1-state automaton Am, whose start state is the state 0, and the only �nal stateis state m. For simpli
ity, assume for now m = 2k for some integer k ≥ 0. It is easilyobserved that ea
h a

epting
omputation path has to go through the middle state m

2at least on
e. Ea
h time su
h a path rea
hes this state, the path
an either
ontinue byreading the letter a, going to the right and, by using only states with numbers higherthan m
2 , eventually returns to the middle state, or a

ept. The other possibility is thatthe path
ontinues from the middle state by reading the letter b, the
omputation
on-tinues by using only states with numbers less than or equal to m

2 , and eventually returnto the middle state. This gives rise to the following re
ursive de�nition: Let r0 = λ,
r1 = a(ba)∗, and rm = rm/2 · (sm/2 + tm/2)

∗ · rm/2, for m ≥ 2. Moreover we de�ne
s0 = t0 = λ, sm = (a · sm−1 · b)

∗, and tm = (b · tm−1 · a)∗, for m ≥ 1. Here the regularexpression sm/2 (tm/2, respe
tively) des
ribe the
omputations that start and end inthe middle state, and using only states numbered higher (lower, respe
tively) than orequal to m/2. Two sample
omputations are depi
ted in Figure 2�in the
omputationdrawn as a solid line the word read between the points marked with A and B belongsto L(rm/2), that read between B and C to L(sm/2), that between C and D to L(tm/2),and �nally the word read between D and E again to L(rm/2). It is easy to see thatany
omputation
an be de
omposed a

ording to the above given re
urren
e.It is not hard to see that this expression has alphabeti
 width O(n log n), the abovebeing a typi
al divide-and
onquer re
urren
e. Sin
e every regular expression of size m
an be transformed into a nondeterministi
 �nite automaton having at most m + 1states, every regular expression des
ribing �(Ln) needs to have size at least Ω(n2).Letting m = awidth(rn) = Θ(n log n), the lower bound reads as Ω(n2) = Ω
(

m2

log2 m

).
�

Language Operations with Polynomial Size Expressions 11
A

B

C

D E

0
m
2 m

B′

C ′

Figure 2. Two sample
omputations (solid and dashed line) on the m-state �nite automa-ton Am. Here B (B′, respe
tively) is the point where the
omputation drawn asa solid (dashed, respe
tively) line rea
hes the middle state the �rst time, and D isthat point of the
omputation, where the middle state is seen the last time duringthe
omputation.5 Con
lusionIn this paper, we identi�ed some regularity-preserving language operations whose e�e
ton required regular expression size is not too drasti
, i.e., whi
h
an in
ur at most apolynomial blow-up. Among these are all operations whi
h are spe
ial
ases of languagequotients, e.g., the pre�x or su�x
losure of a set of words, and the
ir
ular shift.The naive way to implement su
h an operation would involve a translation into �niteautomata and ba
k. However, the
onversion into the ba
k dire
tion likely
ausesan undesirable blow-up in expression size. In
ontrast, the algorithms presented hereare entirely based on rewriting expressions and thus avoid these di�
ulties altogether.There are two ingredients in su
h an approa
h: First, the language operation under
onsideration needs to admit an e�
ient solution for linear expressions. Se
ond, itneeds to be somehow well-behaved with respe
t to length preserving homomorphisms.One task for further resear
h is to �nd other regularity preserving operations forwhi
h this or similar approa
hes might work. For instan
e, for the language of s
atteredsubstrings (superstrings, respe
tively) of the language des
ribed by a regular expres-sion over Σ, we simply repla
e every position a with a subexpression λ + a (with asubexpression des
ribing Σ∗aΣ∗, respe
tively) to obtain a regular expression denotingthat language. Both operations
an be thus performed with only linear in
rease inexpression size provided Σ is �xed. Issues on the state
omplexity of these operationswere studied re
ently in [10℄ and [16℄. Another, probably di�
ult,
hallenge is to try totighten the bounds given here. Quite a few lower bound te
hniques for regular expres-sion size, apart from those based on the number of states required by a nondeterministi
�nite automaton, have been developed re
ently [8, 9, 11℄. Apparently none of them
an be used to infer something nontrivial about language quotients.Referen
es[1℄ P. R. J. Asveld. Generating all
ir
ular shifts by
ontext-free grammars in Greiba
h normalform. International Journal of Foundations of Computer S
ien
e, 18(6):1139�1149, 2007.

12 H. Gruber and M. Holzer[2℄ G. Berry and R. Sethi. From regular expressions to deterministi
 automata. Theoreti
alComputer S
ien
e, 48:117�126, 1986.[3℄ J. Berstel and J. E. Pin. Lo
al languages and the Berry-Sethi algorithm. Theoreti
alComputer S
ien
e, 155(2):439�446, 1996.[4℄ J. A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481�494,1964.[5℄ J.-M. Champarnaud and D. Ziadi. Canoni
al derivatives, partial derivatives and �niteautomaton
onstru
tions. Theoreti
al Computer S
ien
e, 289(1):137�163, 2002.[6℄ R. S. Cohen and J. A. Brzozowski. General properties of star height of regular events.Journal of Computer and System S
ien
es, 4(3):260�280, 1970.[7℄ K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and openproblems. Journal of Automata, Languages and Combinatori
s, 10(4):407�437, 2005.[8℄ W. Gelade and F. Neven. Su

in
tness of the
omplement and interse
tion of regularexpressions. In S. Albers and P. Weil, editors, Pro
eedings of the 25th Symposium onTheoreti
al Aspe
ts of Computer S
ien
e, volume 08001 of Dagstuhl Seminar Pro
eedings,pages 325�336, Bordeaux, Fran
e, February 2008. Internationales Begegnungs- undFors
hungszentrum fuer Informatik (IBFI), S
hloss Dagstuhl, Germany.[9℄ H. Gruber and M. Holzer. Finite automata, digraph
onne
tivity, and regular expressionsize. In L. A
eto, I. Damgaard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, andI. Walkuwiewi
z, editors, Pro
eedings of the 35th International Colloquium on Automata,Languages and Programming, Reykjavik, I
eland, July 2008. Springer. A

epted for pub-li
ation.[10℄ H. Gruber, M. Holzer, and M. Kutrib. More on the size of Higman-Haines sets: E�e
tive
 onstru
tions. In J. O. Durand-Lose and M. Margenstern, editors, Pro
eedings of the
5th International Conferen
e Ma
hines, Computations, and Universality, volume 4664 ofLNCS, pages 193�204, Orléans, Fran
e, September 2007. Springer.[11℄ H. Gruber and J. Johannsen. Optimal lower bounds on regular expression size using
ommuni
ation
omplexity. In R. Amadio, editor, Pro
eedings of the 11th InternationalConferen
e Foundations of Software S
ien
e and Computation Stru
tures, volume 4962of LNCS, pages 273�286, Budapest, Hungary, Mar
h�April 2008. Springer.[12℄ M. Holzer, K. Salomaa, and S. Yu. On the state
omplexity of k-entry deterministi
 �niteautomata. Journal of Automata, Languages and Combinatori
s, 6(4):453�466, 2001.[13℄ J. E. Hop
roft and J. D. Ullman. Introdu
tion to Automata Theory, Languages andComputation. Addison-Wesley, 1979.[14℄ L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):140�162, 2003.[15℄ M. Kappes. Des
riptional
omplexity of deterministi
 �nite automata with multiple initialstates. Journal of Automata, Languages and Combinatori
s, 5(3):269�278, 2000.[16℄ A. Okhotin. On the state
omplexity of s
attered substrings and superstrings. Te
hni
alReport TUCS Te
hni
al Report No.849, University of Turku - Department of Mathemat-i
s and Turku Centre for Computer S
ien
e and A
ademy of Finland, O
tober 2007.[17℄ A. Okhotin and G. Jirásková. State
omplexity of
y
li
 shift. RAIRO � Theoreti
alInformati
s and Appli
ations, 42(2):335�360, 2008.

