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2 H. Gruber and M. Holzerto onvert the expression into a �nite automaton, implement the operation on a �niteautomaton, and onvert bak to a regular expression using state elimination. Yet thatlast step an inur an exponential blow-up in general, even over binary alphabets [9℄.Here, we give polynomial upper bounds for the required expression size resultingfrom taking language quotients and irular shift. Desriptional omplexity aspets ofthese operations were already studied in [1, 17℄ for the irular shift and [12, 15℄ forlanguage quotients�the latter two referenes onsider deterministi �nite automatawith multiple start states, but the results easily translate to state omplexity resultsfor (left) quotients. The basi idea is to implement the operation for the speial aseof linear expressions [2℄ alled single-ourrene regular expressions in [8℄. These areexpressions in whih every alphabeti symbol ours exatly one, whih makes it easierto deal with as they an desribe only loal languages. To over the general ase, westudy the interplay of the operations with length-preserving homomorphisms.2 Basi de�nitionsWe reall some basi notions in formal language theory�for a thorough treatment,the reader might want to onsult a textbook suh as [13℄. In partiular, let Σ be a�nite alphabet and Σ∗ the set of all words over the alphabet Σ, inluding the emptyword λ. A (formal) language over the alphabet Σ is a subset of Σ∗. Apart from theregular operations on languages, namely (�nite) union, atenation, and star, we brie�yreall the following operations on languages: The reversal of a language L, denotedby LR, onsists of all words whih, when read bakwards yield a word in L. The (left)derivative of a language L with respet to a word w, written as w−1L, is de�ned as
{x | wx ∈ L }, the (left) quotient of L with respet to a set of words W , denotedby W−1L, is de�ned as ⋃

w∈W w−1L. The speial ase W = Σ∗ is known as the su�xlosure of L and denoted by suf(L). We an perform similar operations when readingwords from right to left: The right derivative of a language L with respet to a word
w is de�ned as { v | vw ∈ L }. This operation an be expressed using derivatives andreversal as ((wR)−1LR)R; right quotients and the pre�x losure pre(L) are de�ned inan analogous manner. The irular (or yli) shift of a language, denoted by �(L), isgiven by {xw | wx ∈ L }.Let Σ be an alphabet. The regular expressions over Σ are de�ned reursively in theusual way:1 ∅, λ, and every letter a with a ∈ Σ is a regular expression; and when sand t are regular expressions, then (s + t), (s · t), and (s)∗ are also regular expressions.The language denoted by a regular expression r, denoted by L(r), is de�ned as follows:
L(∅) = ∅, L(λ) = {λ}, L(a) = {a}, L(s + t) = L(s) ∪ L(t), L(s · t) = L(s) · L(t),and L(s∗) = L(s)∗. Two regular expressions are alled equivalent if they denote thesame language. For a regular expression r, de�ne λ(r) = λ if λ ∈ L(r), and λ(r) = ∅otherwise. Likewise, for a language L, we de�ne λ(L) analogously.1For onveniene, parentheses in regular expressions are sometimes omitted and the onatena-tion is simply written as juxtaposition. The priority of operators is spei�ed in the usual fashion:onatenation is performed before union, and star before both produt and union.



Language Operations with Polynomial Size Expressions 3The size or alphabeti width of a regular expression r over the alphabet Σ, denotedby awidth(r), is de�ned as the total number of ourrenes of letters of Σ in r. Fora regular language L, we de�ne its alphabeti width, awidth(L), as the minimumalphabeti width among all regular expressions desribing L. The star height of aregular expression r, denoted by h(r) is a strutural omplexity measure indutivelyde�ned by(I) h(r) = 0, for r ∈ Σ ∪ {∅, λ},(II) h(s · t) = h(s + t) = max (h(s), h(t)), and(III) h(r∗) = 1 + h(r).The star height of a regular language L is then de�ned as the minimum star heightamong all regular expressions desribing L.Let r be a regular expression. Following [14℄, we say that r is redued if all of thefollowing onditions hold: If r ontains the symbol ∅, then r = ∅; the expression r on-tains no subexpression of the form st or ts, satisfying L(s) = {λ} and no subexpressionof the form (s∗)∗; if r ontains a subexpression of the form s+t or t+s with L(s) = {λ},then λ /∈ L(t); if r ontains a subexpression of the form s∗, then L(s) 6= {λ}. Other-wise r is alled reduible. The above de�nition suggests some rewriting rules, suh asreplaing s + ∅ with s, and a few more rules, see [14℄. By iteratively applying the rulesto all subexpressions until none is appliable, we an redue every regular expressionto a redued one.Clearly, for every regular expression there exists an equivalent redued regular ex-pression with alphabeti width and star height no larger than the original expression.We will need the following relation between star height and alphabeti width of reduedregular expressions:Lemma 1. Let r be a redued regular expression. Then h(r) ≤ awidth(r).Proof : First, onsider the ases L(r) = ∅ and L(r) = {λ}. It is easy to see from thede�nition of redued expressions that we must have r = ∅ and r = λ, respetively, andthe laim holds in these ases. These are the only redued expressions with alphabetiwidth 0.For the ase awidth(r) ≥ 1, we prove the following laim by indution on thetotal number of ourrenes of operators in r: If the redued expression r is a starredexpression, then h(r) ≤ awidth(r), otherwise h(r) ≤ awidth(r) − 1.If r ontains no operators at all, then the statement learly holds. To do the indu-tion step, assume the statement holds for all regular expressions with at most m our-renes of operators. In the ases r = s+ t and r = s ·t, we have h(r) = max (h(s), h(t)),and the statement holds by indution hypothesis. If r is of the form (s)∗, then s isnot a starred expression, sine r is redued. Furthermore, L(s) an be neither emptynor equal to {λ}, sine otherwise L(r) = {λ}, and r would not be redued. Thusby indution assumption, h(s) ≤ awidth(s) − 1. Sine awidth(r) = awidth(s) and
h(r) = h(s) + 1, the laim also holds in this ase, and the proof is ompleted. �



4 H. Gruber and M. Holzer3 Linear expressionsLet r be a regular expression over the alphabet Σ. Reall that the alphabeti widthof r, denoted by awidth(r), is the total number of ourrenes of alphabeti symbolsin r. We refer to the ith alphabeti letter in r as the ith position. A regular expression
r over an alphabet Σ = {a1, a2, . . . , an} is alled a linear expression if and only if
|Σ| = awidth(r) and the ith position in r is the symbol ai. In this ase, there is astraightforward bijetion between positions and alphabet symbols, and here we shalloften denote the used alphabet by Pr.For two alphabets Σ and Γ, a homomorphism h : Σ∗ → Γ∗ is length-preservingor also letter-to-letter if it maps all symbols from Γ to symbols from Σ. It is easy tosee that eah regular expression r is the image of a unique linear expression r undera length-preserving homomorphism: That homomorphism maps the symbol ai to the
ith position of r. This homomorphism will be denoted by ℓr or just ℓ in the ase r isunderstood from the ontext.Example 2. For the regular expression r = ((ab)∗a)∗, the orresponding linear ex-pression is r = ((a1a2)

∗a3)
∗, and the length-preserving homomorphism whih maps rto r is given by ℓr = {a1 7→ a, a2 7→ b, a3 7→ a}. �Let Σ be an alphabet. A language L ⊆ Σ∗ is loal if it an be written as L =

λ(L) ∪ ((PΣ∗ ∩ Σ∗S) \ (Σ∗NΣ∗)), for some P, S ⊆ Σ and N ⊆ Σ2. Note that in thisde�nition, we permit the empty word to be a member of a loal language. The oneptof loal languages is related to linear expressions as follows [3℄:Theorem 3. For every linear expression r, the language L(r) is loal.We brie�y reall the de�nition of the anonial derivative da(r) of a linear expres-sion r with respet to an alphabet symbol a, in the reformulation given in [5, Prop. 6℄:De�nition 4. Let r be a linear expression and let a be a symbol in Pr. Then theanonial derivative da(r) is omputed reursively by applying the following rules and�nally reduing the expression:
da(a) = λ

da(s + t) =

{

da(s) if da(s) 6= ∅

da(t) otherwise
da(s · t) =

{

da(s) · t if da(s) 6= ∅

da(t) otherwise
da(s

∗) = da(s) · s
∗And da(r) = ∅ in all ases not overed above.The study [5℄ relates the anonial derivatives of a linear expression to the originalde�nition of derivatives for general regular expressions due to Brzozowski [4℄, and to



Language Operations with Polynomial Size Expressions 5the ontinuations introdued by Berry and Sethi [2℄. The results from [5℄ relevant toour ontext are summarized in the following haraterization:Theorem 5. Let r be a linear expression, let a be a symbol in Pr, and u a word over Pr.If the set (ua)−1L(r) is nonempty, then it is desribed by the anonial derivative da(r).Thus for a redued linear expression r, the anonial derivative da(r) desribes thelanguage quotient (P ∗
r a)−1L(r).Example 6. Consider again the linear expression r = ((ab)∗c)∗ from Example 2; wenow use the alphabet {a, b, c} instead of {a1, a2, a3} to inrease readability. Then

da(r) = da((ab)∗c) · ((ab)∗c)∗ = da((ab)∗) · c · ((ab)∗c)∗

= da(ab) · (ab)∗ · c · ((ab)∗c)∗ = da(a) · b · (ab)∗ · c · ((ab)∗c)∗

= λ · b · (ab)∗ · c · ((ab)∗c)∗ = b(ab)∗c((ab)∗c)∗.A similar omputation yields db(r) = (ab)∗c((ab)∗c)∗ and dc(r) = ((ab)∗c)∗. �Now we generalize the above notion from symbols a ∈ Pr to sets of symbols A ⊆ Pras follows:De�nition 7. Let r be a redued linear expression and let A be a set of symbol in Pr.Then the anonial derivative dA(r) is omputed reursively by applying the followingrules and �nally reduing the expression:
dA(a) = λ if a ∈ A

dA(s + t) = dB(s) + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s · t) = dB(s) · t + dA\B(t) with B = { a ∈ A | da(s) 6= ∅ }

dA(s∗) = dA(s) · s∗And dA(r) = ∅ in all ases not overed above.A straightforward indution shows that the de�nition works as expeted:Lemma 8. Let r be a linear expression and A a set of symbols in r. Then L(dA(r)) =
⋃

a∈A L(da(r)). �Next, we estimate the size of the expressions dA(r).Lemma 9. Let r be a redued linear expression of alphabeti width n ≥ 1 and starheight h, and let A be a subset of Pr. Then the expression dA(r) has size at most
n2−n

2 + hn = O(n2).Proof : First, reall that Lemma 1 proves that the laimed size is in O(n2). We provethe laim by indution on the depth d ≥ 0 of the syntax tree of r. In the ase d = 0,then with awidth(r) ≥ 1 we must have r = a for some a ∈ Pr, and the laim learlyholds. To do the indution step, we onsider three ases.



6 H. Gruber and M. HolzerIf r is of the form s + t, then dA(r) is the expression obtained from reduing
dB(s) + dA\B(t). Let awidth(s) = k and awidth(t) = n − k, for some k ≥ 0. Byindution hypothesis we obtain that

awidth(dA(r)) ≤
k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k).By rearranging terms, we get

k2 − k + (n − k)2 − (n − k)

2
=

n2 − n

2
+ k(k − n) ≤

n2 − n

2
,and thus awidth(dA(r)) is bounded above by n2−n

2 + hn in this ase.If r is of the form s · t, then dA(r) is the expression obtained from reduing theexpression dB(s) · t + dA\B(t). Sine r is redued, both s and t have alphabeti widthat least 1. Letting k ≥ 1 denote the alphabeti width of s and n − k the alphabetiwidth of t, we obtain by indution hypothesis that
awidth(dA(r)) ≤

k2 − k

2
+ hk +

(n − k)2 − (n − k)

2
+ h(n − k) + n − k.By a similar omputation as for the previous ase, the right hand side in the aboveinequality is still bounded above by n2−n

2 + hn.Finally, if r is of the form s∗, then the depth of s is smaller than that of r, and byindution assumption awidth(dA(r)) ≤ awidth(dA(s))+ n ≤ n2−n
2 + (h− 1)n + n. Thisovers all possible ases, and the proof is ompleted. �We remark that our notion of dA(r) di�ers from the one given in [5℄ in that ourde�nition yields expressions of size O(n2), while de�ning dA as ∑

a∈A da(r) would bemuh more redundant. It should be said that the atual size of these expressions isimmaterial in the ontext of [5℄, but is important in the present paper.Now we take a loser look at loal languages. The following lemma is easy to seefrom the de�nition of loal languages:Lemma 10. If L ⊆ Σ∗ is a loal language, then for eah a ∈ Σ holds:
u1 · a · v1 ∈ L and u2 · a · v2 ∈ L implies u1 · a · v2 ∈ L. �For a loal language L and an alphabet symbol a, we may thus de�ne da(L) asthe language quotient da(L) = (Σ∗a)−1L. Likewise, for a set of symbols A de�ne

dA(L) = (Σ∗A)−1L. This operator overloading is perfetly onsistent with the useof the notation da(r) to denote the anonial derivative of a linear expression r withrespet to an alphabet symbol a: By Theorem 5, we have L(da(r)) = da(L(r)).The above haraterization allows us to provide a neat formula for left quotients ofloal languages:Lemma 11. Let L ⊆ Σ∗ be a loal language and let W ⊆ Σ∗ an arbitrary language.De�ne A = { a ∈ Σ | W ∩ pre(L) ∩ Σ∗a 6= ∅ }. Then
W−1L = λ(W ) · L ∪

⋃

a∈A

da(L) = λ(W ) · L ∪ dA(L).



Language Operations with Polynomial Size Expressions 7Proof : First of all, it follows from the de�nition of language quotients that W−1L =
(W ∩ pre(L))−1L. Seond, if we deompose the set W as λ(W ) ∪

⋃

a∈Σ(W ∩ Σ∗a), weobtain
W−1L = λ(W )−1 · L ∪

⋃

a∈Σ

(W ∩ Σ∗a ∩ pre(L))−1L

= λ(W ) · L ∪
⋃

a∈A

(W ∩ Σ∗a ∩ pre(L))−1L,
(1)sine ⋃

a∈Σ\A(W ∩ Σ∗a ∩ pre(L))−1L = (∅)−1L = ∅. Finally, for a ∈ A, let ua beany word in W ∩ Σ∗a ∩ pre(L). Then from Lemma 10 one an readily dedue that
(ua)−1L = (Σ∗a ∩ pre(L))−1L = (Σ∗a)−1L = da(L). Thus (W ∩ Σ∗a ∩ pre(L))−1L =
da(L). By putting this into Equation (1), the result follows. �Also for the irular shift of loal languages, we obtain a nie haraterization:Lemma 12. Let L ⊆ Σ∗ be a loal language. Then for the irular shift �(L) holds

�(L) = λ(L) ∪
⋃

a∈Σ

a · da(L) · (da(L
R))R.Proof : The irular shift of any language L an by de�nition be written as �(L) =

λ(L) ∪
⋃

a∈Σ L(a), with
L(a) = { awv | v,w ∈ Σ∗, vaw ∈ L }.In partiular, if L is loal, Lemma 10 tells us that there annot be any dependeniesbetween the subwords v and w in the de�nition of L(a). Thus L(a) an be rewrittenas
L(a) =

⋃

{ v∈Σ∗|va·da(L)⊆L }

a · da(L) · v,and sine loal languages are readily seen to be losed under reversal, redoing the sametrik for the reversed language yields L(a) = a · da(L) · da(L
R)R, as desired. �Example 13. We also ompute the irular shift of the language L = L(r) in our run-ning example. By Lemma 12, we an write �(L) as λ(L)∪

⋃

a∈Σ a·da(L)·(da(LR))R. Thesets da(L), db(L) and dc(L) are denoted by the expressions da(r) = b(ab)∗c((ab)∗c)∗,
db(r) = (ab)∗c((ab)∗c)∗, and dc(r) = ((ab)∗c)∗, respetively, whih were omputed inExample 6. In a similar manner, we obtain for rR = (c(ba)∗)∗ the anonial deriva-tives da(r

R) = (ba)∗(c(ba)∗)∗, db(r
R) = a(ba)∗(c(ba)∗)∗, and dc(r

R) = (ba)∗(c(ba)∗)∗.We have λ(L) = λ, and straightforward rules for implementing the reversal of regularexpressions yield ((ba)∗(c(ba)∗)∗)R = ((ab)∗c)∗(ab)∗ as well as (a(ba)∗(c(ba)∗)∗)R =
((ab)∗c)∗(ab)∗a. Thus a regular expression denoting �(L(r)) is given by

λ + a · b(ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗

+ b · (ab)∗c((ab)∗c)∗ · ((ab)∗c)∗(ab)∗a + c · ((ab)∗c)∗ · ((ab)∗c)∗(ab)∗.



8 H. Gruber and M. HolzerFinally, we note that in an atual implementation the omputational overhead for thetwo reversal operations arried out here ould be saved by de�ning the onept of�anonial right derivatives� using rules analogous to those for omputing anonial(left) derivatives in De�nition 4. �These haraterizations immediately lend themselves to an implementation of quo-tient and irular shift operations on linear expressions via anonial derivatives. UsingLemma 9, we an estimate the resulting expression size as follows:Theorem 14. Let r be a linear expression of size n, and let L = L(r). Then for setof words W ⊆ P ∗
r , there is a regular expression of size O(n2) denoting W−1L, and aregular expression of size O(n3) denoting the irular shift �(L). �4 The General CaseThe above results allow us to ompute from a given linear expression relatively smallregular expressions denoting a language quotient or the irular shift of the denotedlanguage. In this setion, we investigate the interation of (length-preserving) homo-morphisms with the language operations under onsideration to transfer the obtainedresults to the general ase. The easier ase is a language operation that ommutes withlength-preserving homomorphisms. This is the ase for the irular shift:Lemma 15. Let ℓ be a length-preserving homomorphism, and let L ⊆ Σ∗ be a lan-guage. Then �(ℓ(L)) = ℓ(�(L)).Proof : Sine both the homomorphism and irular shift operation ommute with tak-ing �nite and in�nite unions, it su�es to show the laim for the ase L ontains asingle word w = a1a2 . . . ak. In the ase k ≤ 1, we have L = �(L), and the laim istrivially true. So assume k ≥ 2. Then

ℓ(�({w})) = {ℓ(w)} ∪ ℓ ({ aj . . . aka1a2 · · · aj−1 | 2 ≤ j ≤ k })

= {ℓ(w)} ∪ { ℓ(aj) . . . ℓ(ak)ℓ(a1)ℓ(a2) . . . ℓ(aj−1) | 2 ≤ j ≤ k }.Now let x = b1b2 . . . bk, with bi = ℓ(ai). Then
�({ℓ(w)}) = {ℓ(w)} ∪ { bj . . . bkb1b2 . . . bj−1 | 2 ≤ j ≤ k }

= {ℓ(w)} ∪ { ℓ(aj) . . . ℓ(ak)ℓ(a1)ℓ(a2) . . . ℓ(aj−1) | 2 ≤ j ≤ k },thus proving the desired equality. �The next lemma shows how homomorphisms interat with taking left derivatives.Lemma 16. Let L ⊆ Σ∗ be a regular language, let ℓ : Σ∗ → Γ∗ be a length-preservinghomomorphism, and let w ∈ Γ∗. Then w−1ℓ(L) =
⋃

x∈ℓ−1(w) ℓ(x−1L).Proof : Let A = (Q,Σ, δ,Q0, F ) be a nondeterministi �nite automaton (possibly withmultiple start states) aepting L, in the standard notation of [13℄. We obtain a



Language Operations with Polynomial Size Expressions 9nondeterministi �nite automaton B aepting ℓ(L) by a standard onstrution: Let
B = (Q,Γ, δ′, Q0, F ) with δ′(q, a) =

⋃

b∈ℓ−1(a) δ(q, b), for every q ∈ Q and every a ∈ Γ.For an automaton C aepting w−1ℓ(L), we perform the standard quotient onstru-tion: Let C = (Q,Γ, δ′, Q′
0, F ), with Q′

0 =
⋃

q0∈Q0
δ′(q0, w).To obtain a �nite automaton aepting the language ⋃

x∈ℓ−1(w) x−1L, take D =

(Q,Σ, δ,Q′
0, F ), whih is obtained from A by replaing Q0 with the start states of C.Note that for the set Q′

0 holds
Q′

0 =
⋃

q0∈Q0

δ′(q0, w) =
⋃

x∈ℓ−1(w)

⋃

q0∈Q0

δ(q0, x),so this automaton indeed aepts the quotient ⋃

x∈ℓ−1(w) x−1L. To get an automatonaepting the image under ℓ of this language, we replae in D, similar to above, thetransition funtion δ with δ′ and hange the input alphabet to Γ. But then we endup with the automaton (Q,Γ, δ′, Q′
0, F ), whih is idential to the automaton C. Thus

w−1ℓ(L) =
⋃

x∈ℓ−1(w) ℓ(x−1L) as desired. �Now we are ready to state the main result of this paper:Theorem 17. Let r be a regular expression of size n denoting the language L ⊆ Σ∗,and let W ⊆ Σ∗. Then there is a regular expression of size O(n2) denoting W−1L anda regular expression of size O(n3) denoting �(L).Proof : Let r be the linear expression for r, and ℓ = ℓr be the homomorphism whihmaps r to r. Sine ℓ is length preserving, every word w ∈ Σ∗ is in ℓ(Pr)
∗, and thus, byLemma 16, we have

w−1ℓ(L(r)) =
⋃

x∈ℓ−1(w)

ℓ(x−1L(r)).This readily generalizes to sets of words, and we obtain
W−1ℓ(L(r)) =

⋃

w∈W

⋃

x∈ℓ−1(w)

ℓ(x−1L(r)) = ℓ(
⋃

x∈ℓ−1(W )

x−1L(r)) = ℓ
(

(ℓ−1(W ))−1L(r)
)The last one of the above expressions is the image under ℓ of a quotient of r. ByTheorem 14, the latter language an be desribed by a regular expression of size O(n2),and applying the map ℓ does not inrease the alphabeti width. This shows that

awidth(W−1L) = O(n2). For the irular shift, reall from Theorem 14 that �(L(r))has alphabeti width in O(n3). By Lemma 15, �(L(ℓ(r))) = ℓ(�(L(r))), and, as notedbefore, applying a length-preserving homomorphism does not inrease the alphabetiwidth. �Example 18. From Example 13 we dedue that the irular shift of L(r) is simply
�(L(r)) = λ + a · b(ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗

+ b · (ab)∗a((ab)∗a)∗ · ((ab)∗a)∗(ab)∗a + a · ((ab)∗a)∗ · ((ab)∗a)∗(ab)∗,by applying the length-preserving homomorphism ℓ = {a 7→ a, b 7→ b, c 7→ a} to theregular expression �(L(r)). �
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bFigure 1. A �nite automaton aepting L4Currently, we do not know whether these upper bounds have the right order ofmagnitude. At least, we found an almost quadrati lower bound on the inrease ofalphabeti width for the irular shift operation:Theorem 19. There exist in�nitely many regular languages Lm over a binary alphabetsuh that Lm admits a regular expression of alphabeti width m, but every regularexpression desribing �(Lm) has alphabeti width at least Ω
(

m2

log2 m

).Proof : Our witness language is the language Lm for whih in [17℄ an Ω(m2) lowerbound on the number of states needed by a nondeterministi �nite automaton in orderto aept �(Lm) was proved. The language Lm ontains all words w over the alpha-bet {a, b} suh that |w|a − |w|b = m − 1 and moreover for every pre�x x of w holds
0 ≤ |x|a−|x|b ≤ m−1. A �nite automaton A4 aepting L4 is depited in Figure 1. Bya straightforward generalization of the pattern of the depited automaton, we obtainan m+1-state automaton Am, whose start state is the state 0, and the only �nal stateis state m. For simpliity, assume for now m = 2k for some integer k ≥ 0. It is easilyobserved that eah aepting omputation path has to go through the middle state m

2at least one. Eah time suh a path reahes this state, the path an either ontinue byreading the letter a, going to the right and, by using only states with numbers higherthan m
2 , eventually returns to the middle state, or aept. The other possibility is thatthe path ontinues from the middle state by reading the letter b, the omputation on-tinues by using only states with numbers less than or equal to m

2 , and eventually returnto the middle state. This gives rise to the following reursive de�nition: Let r0 = λ,
r1 = a(ba)∗, and rm = rm/2 · (sm/2 + tm/2)

∗ · rm/2, for m ≥ 2. Moreover we de�ne
s0 = t0 = λ, sm = (a · sm−1 · b)

∗, and tm = (b · tm−1 · a)∗, for m ≥ 1. Here the regularexpression sm/2 (tm/2, respetively) desribe the omputations that start and end inthe middle state, and using only states numbered higher (lower, respetively) than orequal to m/2. Two sample omputations are depited in Figure 2�in the omputationdrawn as a solid line the word read between the points marked with A and B belongsto L(rm/2), that read between B and C to L(sm/2), that between C and D to L(tm/2),and �nally the word read between D and E again to L(rm/2). It is easy to see thatany omputation an be deomposed aording to the above given reurrene.It is not hard to see that this expression has alphabeti width O(n log n), the abovebeing a typial divide-and onquer reurrene. Sine every regular expression of size man be transformed into a nondeterministi �nite automaton having at most m + 1states, every regular expression desribing �(Ln) needs to have size at least Ω(n2).Letting m = awidth(rn) = Θ(n log n), the lower bound reads as Ω(n2) = Ω
(

m2

log2 m

).
�
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Figure 2. Two sample omputations (solid and dashed line) on the m-state �nite automa-ton Am. Here B (B′, respetively) is the point where the omputation drawn asa solid (dashed, respetively) line reahes the middle state the �rst time, and D isthat point of the omputation, where the middle state is seen the last time duringthe omputation.5 ConlusionIn this paper, we identi�ed some regularity-preserving language operations whose e�eton required regular expression size is not too drasti, i.e., whih an inur at most apolynomial blow-up. Among these are all operations whih are speial ases of languagequotients, e.g., the pre�x or su�x losure of a set of words, and the irular shift.The naive way to implement suh an operation would involve a translation into �niteautomata and bak. However, the onversion into the bak diretion likely ausesan undesirable blow-up in expression size. In ontrast, the algorithms presented hereare entirely based on rewriting expressions and thus avoid these di�ulties altogether.There are two ingredients in suh an approah: First, the language operation underonsideration needs to admit an e�ient solution for linear expressions. Seond, itneeds to be somehow well-behaved with respet to length preserving homomorphisms.One task for further researh is to �nd other regularity preserving operations forwhih this or similar approahes might work. For instane, for the language of satteredsubstrings (superstrings, respetively) of the language desribed by a regular expres-sion over Σ, we simply replae every position a with a subexpression λ + a (with asubexpression desribing Σ∗aΣ∗, respetively) to obtain a regular expression denotingthat language. Both operations an be thus performed with only linear inrease inexpression size provided Σ is �xed. Issues on the state omplexity of these operationswere studied reently in [10℄ and [16℄. Another, probably di�ult, hallenge is to try totighten the bounds given here. Quite a few lower bound tehniques for regular expres-sion size, apart from those based on the number of states required by a nondeterministi�nite automaton, have been developed reently [8, 9, 11℄. Apparently none of theman be used to infer something nontrivial about language quotients.Referenes[1℄ P. R. J. Asveld. Generating all irular shifts by ontext-free grammars in Greibah normalform. International Journal of Foundations of Computer Siene, 18(6):1139�1149, 2007.
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