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Abstract

We investigate the average-case state and transition complexity of deterministic
and nondeterministic finite automata, when choosing a finite language of given max-
imum word length n uniformly at random. The case where all words are of equal
length is also taken into account. It is shown that almost all deterministic finite
automata accepting finite languages over a binary input alphabet have state com-
plexity Θ(2

n

n
). Moreover, we develop a framework that allows us to investigate the

average-case complexity of operations like union, intersection, complementation, and
reversal on finite languages. Nondeterministic finite automata are shown to perform
better than deterministic ones, namely their state complexity is in Θ(

√
2n) on the

average. Interestingly, in both cases the aforementioned bounds are asymptotically
like in the worst case. However, the nondeterministic transition complexity is shown
to be again Θ(2

n

n
). The case of unary finite languages is also considered.

1 Introduction

The study of descriptional complexity issues for finite automata dates back to the mid
1950’s. One of the earliest results is that deterministic and nondeterministic finite au-
tomata are computationally equivalent, and that nondeterministic finite automata can
offer exponential state savings compared to deterministic ones, see [18]—by the powerset
construction one increases the number of states from n to 2n, which is known to be a
tight bound. Motivated by several applications and implementations of finite automata
in software engineering, programming languages and other practical areas in computer
science, the descriptional complexity of finite automata problems has gained new interest
during the last decade. Tight upper bounds for the deterministic and nondeterministic
state complexity of many operations on regular languages are known [12, 18, 19].

In many applications the regular languages are actually finite as, e.g., in natural
language processing or constraint satisfaction problems in artificial intelligence. This
prompted quite some research activity on finite languages—see [18] for an overview. Obvi-
ously, the length of the longest word in a finite language is a lower bound on the number of
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states of a finite automaton accepting a finite language. In fact it can be even exponential
in the length of the longest word in the finite language as shown in [3, 7]. To be more pre-
cise, there is a finite language L over a binary alphabet whose longest word is of length n
such that the minimal deterministic finite automaton accepting L needs Θ(2n

n ) states. For
the state savings for changing from a deterministic finite automaton to a nondeterministic
finite automaton the bounds for automata accepting finite languages is slightly weaker
than in the general case. In [16] it was shown that one can transform every nondetermin-
istic finite automaton accepting a finite language into an equivalent deterministic finite
automaton increasing the number of states from n to Θ(

√
2n), and this bound was shown

to be sharp. More results on the state complexity of operations on finite languages can be
found in [4, 12].

However, most of the work on descriptional complexity of regular languages yields
worst-case results. To our knowledge, very few attempts have been made in order to
understand certain aspects of the average behaviour of regular languages [2, 5, 6, 8, 14].
Average-case complexity turns out to be much harder to determine than worst-case com-
plexity, as it is currently unknown how many non-isomorphic automata of n states there
are over a binary alphabet. For a recent survey on the problem of enumerating finite
automata we refer to [9]. However, for finite automata with a singleton letter input al-
phabet the enumeration problem was solved in [14], where also the average-case state
complexity of operations on unary languages was studied. In this paper we concentrate
on the average-case descriptional complexity of deterministic and nondeterministic finite
automata accepting finite languages. By choosing a finite language L with given maximal
word length uniformly at random, one can treat the size of the minimal deterministic or
nondeterministic finite automaton accepting L as a random variable. Observe that our
setup is different to that used in [14]. There deterministic finite automata are chosen at
random among all n-state deterministic finite automata, whereas our setup is centered at
languages. Due to this difference in the model, the results on finite languages cannot be
directly compared to each other.

At first glance we show that almost all deterministic finite automata accepting finite
languages over a binary input alphabet with word length at most n have state complex-
ity Θ(2n

n ), which is asymptotically like the worst-case. Then we introduce a stochastic pro-
cess to generate finite languages, which is shown to be equivalent to the above mentioned
setup choosing a finite language uniformly at random. This stochastic language genera-
tion process allows us to investigate operations on finite languages from the average-case
point of view. It turns out that the expected value of the state complexity of a determin-
istic finite automaton accepting the union or intersection of two finite languages is larger
than 4

5 · 2n

n on the average, as n tends to infinity. Similar bounds can be derived for the
iteration of Boolean operations. Moreover, the average-case complexity of operations on
finite unary languages is determined exactly. Finally, nondeterministic finite automata are
considered. It turns out that the nondeterministic state complexity is in Θ(

√
2n) on the

average, which is superior to the deterministic case with respect to the number of states.
However, interestingly we show that the number of transitions needed is again Θ(2n

n ) in
most cases. Hence, the overall size, i.e., the length of a description of a finite state ma-
chine, is from the average-case complexity point of view the same for both deterministic
and nondeterministic finite automata. Finally, we note that results similar to those for
the binary case can be derived for larger alphabet sizes along the way outlined here.
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2 Preliminaries

First we recall some definitions from formal language and automata theory; see, e.g., [18].
In particular, let Σ be an alphabet and Σ∗ the set of all words over the alphabet Σ
containing the empty word λ. The length of a word w is denoted by |w|, where |λ| = 0.
The reversal of a word w is denoted by wR and the reversal of a language L ⊆ Σ∗ by LR,
which equals the set {wR | w ∈ L }. Furthermore let Σ≤n = {w ∈ Σ∗ | |w| ≤ n } and
Σn = {w ∈ Σ∗ | |w| = n }. In this paper we are interested in the following two language

families over a binary input alphabet Σ: (1) Fn = 2Σ≤n

of size |Fn| = 22n+1−1, and (2)
Bn = 2Σn

of size |Bn| = 22n

.
A nondeterministic finite automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is a

finite set of states, Σ is a finite set of input symbols, δ : Q × Σ → 2Q is the transition
function, q0 ∈ Q is the initial state, and F ⊆ S is the set of accepting states. The
transition function δ is extended to a function from δ : Q × Σ∗ → 2Q in the natural way,
i.e., δ(q, λ) = {q} and δ(q, aw) =

⋃

q′∈δ(q,a) δ(q′, w), for q ∈ Q, a ∈ Σ, and w ∈ Σ∗. A
nondeterministic finite automaton A = (Q,Σ, δ, q0, F ) is deterministic, if |δ(q, a)| = 1 for
every q ∈ Q and a ∈ Σ. In this case we simply write δ(q, a) = p instead of δ(q, a) = {p}.
The language accepted by a finite automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }.
Two automata are equivalent if they accept the same language.

For a regular language L, the deterministic (nondeterministic, respectively) state com-
plexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal number of states
needed by a deterministic (nondeterministic, respectively) finite automaton accepting L.
The transition complexity is analogously defined as the state complexity and we abbreviate
the deterministic (nondeterministic, respectively) transition complexity of a regular lan-
guage L by tc(L) (ntc(L), respectively). To be more precise, for a nondeterministic finite
automaton A = (Q,Σ, δ, q0, F ) the number of transitions equals |{(q, a, p) | p ∈ δ(q, a) }|.
This naturally extends to deterministic finite automata. Observe that only non-blocking
transitions are counted; a transition is blocking, if δ(q, a) = ∅, for some q ∈ Q and a ∈ Σ.
Obviously, a deterministic finite automaton with n states and input alphabet Σ has ex-
actly |Σ| ·n transitions, because every state has |Σ| transitions leaving it. And it is easy to
see that in the deterministic model the state minimal finite automaton is also transition
minimal. Hence, in the forthcoming we will only consider the nondeterministic transition
complexity of regular languages.

Moreover, we assume the reader to be familiar with the basic notations of probability
theory as contained in textbooks such as [17]. In particular, we make use of Markov’s
inequality and Chernoff’s bound.

Theorem 1 1. Let X be a random variable taking on non-negative values. Then for
every t ∈ IR+ holds P[X ≥ t] ≤ E[X]

t .

2. Assume X is a binomially distributed variable. Then for every 0 < d < 1 holds

P

[∣

∣

∣

E[X]−X
E[X]

∣

∣

∣
> d

]

< 2 exp
(

−d2
E[X]
3

)

.

Finally, we introduce the following notion in order to compare functions: Let f, g :
IN → IR+ be two monotone functions. Then f(n) ∼ g(n), if limn→∞

f(n)
g(n) = 1, and

f(n) � g(n), if limn→∞
f(n)
g(n) < 1.
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Lemma 2 Assume f, g : IN → IR+ be two monotone functions. Then the inequality
limn→∞(log f(n)−log g(n)) < ∞ implies f(n) = O(g(n)), where log denotes the logarithm
of base 2.

In particular, this lemma shows that log(f(n)) � log(g(n)) implies f(n) = o(g(n)).

3 Finite Languages with Bounded Word Length

A natural language family to study the descriptional complexity of finite languages is the
family of languages over a fixed alphabet whose longest word has a certain length. This
leads us to the language families Fn and Bn, when restricting to two-letter alphabet. These
language families have recently attracted some research interests, see, e.g., [1, 3, 7, 11].
Concerning the worst-case deterministic state complexities of the aforementioned language
families the following is known: In [7] the maximum deterministic state complexity among
all languages in Bn was investigated. Later, in [3] this result was generalized to the
language family Fn, and moreover to larger alphabet sizes. The results on the language
families under consideration read as follows:

Theorem 3 ([3, 7]) 1. Let M(Bn) denote the maximum deterministic state complex-
ity among all languages in Bn. Then M(Bn) ≤ (1 + o(1))2n+1/n.

2. Let M(Fn) denote the maximum deterministic state complexity among all languages
in Fn. Then M(Fn) ≤ (1 + o(1))2n+2/n.

The respective authors also gave more complex but precise formulas for M(Bn) and
M(Fn), but for our purposes knowledge about the asymptotic behavior is sufficient; also
note that M(Bn) is a lower bound for M(Fn). So in both cases the asymptotics are
in Θ(2n

n ). We show that indeed almost every language in Fn or Bn has deterministic state
complexity in Θ(2n

n ). The theorem reads as follows:

Theorem 4 Let c < 1 be a constant. If L is a language chosen from Bn (Fn, respectively)
uniformly at random, then for large enough n holds E[sc(L)] > c2n

n .

Proof We show that the number of languages in Bn acceptable by deterministic finite
automata with at most c2n

n states is in o(|Bn|), and hence o(|Fn|). Stated another way,
limn→∞ P

[

sc(L) > c2n

n

]

= 1. The result then follows immediately if we apply Markov’s
inequality. Let g(n) be the function counting the number of languages acceptable by
deterministic finite automata with at most n states. In [9, Theorem 9] it was shown that

g(n) ≤ n2n n2n

n! . Thus, log(g(n)) < n log n+ 5
2n+ 1

2 log n+ 3
2 , since n! >

√
2πn

(

n
e

)n
[15] and

log e < 3
2 . Hence, log

(

g
(

c2n

n

))

< 2n
(

cn
n + 5

4n

)

+ 1
2n + 3

2 ≤ c · 2n + o(2n) � log(|Bn|), and
using Lemma 2, we conclude that the number of languages acceptable by deterministic
finite automata with at most c2n

n states is in o(|Bn|). �

3.1 A Different Probabilistic Model for Finite Languages.

The considerations in the previous section can be seen as a model of random finite lan-
guages which are subsets of Σn or Σ≤n, with |Σ| = 2, where all languages in the respective
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set are equiprobable. A different model is based on a stochastic process: Given a set of
words S, we generate a random language L by deciding for each word w ∈ S at random
whether w ∈ L or not. This leads us to the following definition:

Definition 5 Let Σ be a finite alphabet and S be a finite set of words over Σ. Assume
0 < p < 1. For every w ∈ S, we define a Bernoulli experiment with two possible events
w ∈ L and w /∈ L, such that P[w ∈ L] = p and P[w /∈ L] = 1−p. Let L denote the random
event obtained by carrying out this experiment independently for each word in S. Then
we say that L is (S, p)-distributed.

In fact, it is not hard to see that the equiprobable model form the previous subsection
and the above described Bernoulli experiment are equivalent, if p = 1

2 .

Lemma 6 Let Σ be a finite alphabet, S a finite set of words over Σ, and 0 < p < 1. Let L
be a random subset of S. The event L is (S, 1

2)-distributed if and only if all subsets of S
are equally probable.

Proof Assume we pick a subset L ⊆ S at random such that all subsets of S are equally
probable. Note that exactly half of the subsets of S contain the word w, since there
is a bijection between the subsets containing w and the subsets not containing w: For
every subset S′ of the former type, take S′′ = S \ S′. Thus for every word w in S holds
P[w ∈ L] = 1

2 . For the other direction, assume L is (S, 1
2)-distributed. Then for every

L ⊆ S holds P[L] = (1
2 )|L|(1 − 1

2)|S|−|L| = 1
2|S| . �

The latter model has some conceptual advantages for the average case study of the
descriptional complexity of operations on finite languages. For instance, the following
result is easily obtained:

Lemma 7 Let Σ be a finite alphabet, S be a finite set of words over Σ, and 0 < p1, p2 < 1.
If L1 and L2 are independent (S, p1)-distributed and (S, p2)-distributed languages, then
L1∩L2 is (S, p1p2)-distributed, L1∪L2 has distribution (S, p1+p2−p1p2), the distribution
of LR

1 is (S, p1), and that of S \ L1 is (S, 1 − p1).

We proceed with a useful observation about the cardinality of L, namely that |L| is a
binomially distributed random variable with parameters (2|S|, p). The deterministic state
complexity sc(L) is also a random variable. These are primary ingredients for proving
most of the results to come.

For (S, p) distributions, our main interest is devoted to the cases S = Σn and S = Σ≤n,
where Σ is an alphabet of size 2, and p = 1

2 . For these sets, we have seen that sc(L) = Θ(2n

n )
in the worst-case. So the presented estimate is far from sharp, unless p is very small
compared to n. We determine the exact average value in the case S = Σn. The proof,
obtained with a blend of combinatorial and probabilistic arguments, is omitted due to lack
of space.

Theorem 8 Let L be a (Σn, p)-distributed language with |Σ| = 2 and 0 ≤ p ≤ 1. Then

E[sc(L)] = 1 +
∑n

i=0

∑2n−i

k=1

(2n−i

k

)

(

1 −
(

1 − pk(1 − p)2
n−i−k

)2i
)

.
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In the case p is constant while n grows, we can also derive a simpler asymptotic lower
bound on the expected value of the state complexity.

Theorem 9 Assume 0 < p < 1, and S = Σn or S = Σ≤n with |Σ| = 2. Let H(p) =
−p log(p)−(1−p) log(1−p) denote the entropy of p, and L be a (S, p)-distributed language.
Then E[sc(L)] > c2n

n , for every c < H(p), provided n is large enough.

The cases of particular interest are the cases p = 1
4 and p = 3

4 , since these occur for
the state complexities of the results for the union and intersection operations on random
finite languages in our setup, see Lemma 7. For H(1

2) = 1 and H(1
4) = H(3

4) > 4
5 , the

lower bound for the expected value almost matches the a priori upper bounds given in
Theorem 3.

3.2 Unary Finite Languages

We turn to the case where Σ is an unary alphabet. The case where all words are of equal
length is arguably not very interesting, so we turn to the subsets of Σ≤n.

Lemma 10 Let Σ be an unary alphabet, and L be a (Σ≤n, p)-distributed language with

0 < p < 1. Then E(sc(L)) = n + 2 − 1−p
p + (1−p)n+2

p .

Proof The state complexity is governed by the longest word in the language. We have
sc(L) = 1 if and only if L = ∅, and the probability of this event equals (1−p)n+1; otherwise
we have sc(L) = k if and only if k − 2 is the length of the longest word in L. An easy
observation is P [longest word in L has length k − 2 | L 6= ∅] = p · (1 − p)n−k+2. Thus,
setting q = 1 − p, the expected value computes as E(sc(L)) = qn+1 +

∑n+2
k=2 kpqn−k+2 =

qn+1 + p(n+2)
∑n

k=0 qk − p
∑n

k=0 kqk and the claimed result is obtained using elementary
calculus. �

Using Lemma 7, we obtain for the union of two (Σ≤n, 1
2 )-distributed languages over an

unary alphabet an expected value very close to n + 5
3 , if n is large; for the intersection it

is close to n− 1, and for reversal and bounded complement it is the same as the operand,
i.e., close to n + 1.

4 Descriptional Complexity of Nondeterministic Finite Au-
tomata

Now let us turn our attention to the nondeterministic state and transition complexity of
finite languages. A result in the same spirit as Theorem 4 but now concerning the size of
nondeterministic finite automata was obtained in [11].

Lemma 11 ([11]) 1. The number of languages in Bn acceptable by nondeterministic
finite automata with at most 1

2

√
2n states is bounded above by

√
2n+2n

= o(|Bn|) =
o(|Fn|).

2. The number of languages in Bn acceptable by nondeterministic finite automata with
at most 2n

20n transitions is bounded above by
√

22n = o(|Bn|) = o(|Fn|).
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The descriptional complexity in the nondeterministic model cannot exceed the corre-
sponding one in the deterministic model. And in the latter model, transition complexity
is linear in state complexity. Thus, we have a preliminary worst-case estimate of O(2n

n )
for both nondeterministic state and transition complexity. This cannot be improved sub-
stantially for the number of transitions, but for the number of states in a minimal nonde-
terministic finite automaton.

Lemma 12 Assume L is a finite language with L ⊆ Σ≤n. Then nsc(L) < 3√
2

√
2n.

Proof Let ` = b(n − 1)/2c and m = d(n − 1)/2e. We construct a nondeterministic
finite automaton A = (Q, {0, 1}, δ, pλ , F ), where Q = P1 ∪ P2 (the union is disjoint) with
P1 = { pw | w ∈ {0, 1}∗ and |w| ≤ ` } and P2 = { qw | w ∈ {0, 1}∗ and |w| ≤ m }, the set
of final states equals F = {qλ} ∪ { pλ | λ ∈ L }, and the transition function is specified as
follows: (1) For all pw ∈ P1 and a ∈ {0, 1}, the set δ(pw, a) contains the element pwa. (2)
For all w ∈ L\{λ}, if w = xay is the unique decomposition, where |x| = b(|w|−1)/2c, a is
a single letter, and |y| = d(|w|− 1)/2e, then let δ(px, a) contain the element qy. (3) For all
qw ∈ P2 \ {qλ} and a ∈ {0, 1}, the set δ(paw, a) contains the element qw. This completes
the construction of the nondeterministic finite automaton.

It is easy to see that for the number of states in A, we have |P1| + |P2| = 2`+1 − 1 +
2m+1 − 1 < 3√

2

√
2n. It remains to show that L(A) = L. Note that every state pw in P1 is

only reachable by the word w from the initial state pλ, and that for every state qw in P2

there is only one path leading to the final state qλ. So every transition leading from P1

to P2 leads to the acceptance of exactly one word in L. This proves the stated claim. �

Lemma 11 tells us that this heuristics for finding compact nondeterministic finite au-
tomata works pretty well on the average if we wish to keep the number of states as small as
possible. Also, this construction is optimal in the worst case, as witnessed by the language
family Ak in [10, Example 3]. The drawback in this construction is that the number of
transitions is at least equal to the cardinality of the accepted language. Now we have
determined the growth order of the average state complexity in the families Fn and Bn

for three descriptional measures: Deterministic state complexity, nondeterministic state,
and transition complexity.

Theorem 13 Let L be a (S, 1
2)-distributed language with S = Σ≤n, or S = Σn and

|Σ| = 2. Then for every δ > 0, language L has all of the following properties with
probability at least 1 − δ, provided n is large enough:

1

2
·
√

2n < nsc(L) <
3√
2
·
√

2n,

1

20
· 2n

n
< ntc(L) <

2n+4

n
, and

2n−1

n
< sc(L) <

2n+3

n
.

Proof First, we note that the upper bounds are obtained by the worst-case estimates
established in Lemma 12 and Theorem 3. The latter theorem states that sc(L) ≤ (1 +

o(1))2n+2

n , so the claimed upper bound holds for sufficiently large n. And the upper
bound on nondeterministic transition complexity is explained by noting that this measure
cannot exceed the deterministic state complexity by a factor of more than two. The lower
bounds follow from Lemma 11 and the proof of Theorem 4, which can be summarized as
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follows: The total number of languages acceptable by nondeterministic automata with at
most 1

2 ·
√

2n states or by nondeterministic automata with at most 1
20 · 2n

n transitions or

deterministic automata with at most 2n−1

n states is in o(2|S|). �

Our setup also allows us to give a worst-case comparison of nondeterministic state
complexity versus nondeterministic transition complexity. In [1], a heuristics for reducing
the number of states of nondeterministic finite automata accepting languages in Bn is
proposed. It was observed that, although the heuristics performed well in reducing the
number of states in the given automata, but occasionally blowed up the number of tran-
sitions.1 We substantiate this empirical study by proving that there can be a superlinear
lower bound on nondeterministic transition complexity when expressed as a function of
nondeterministic state complexity. And in fact many languages acceptable by nondeter-
ministic finite automata with a given number of states exhibit this behavior.

Theorem 14 For every k > 4 and |Σ| = 2, there is a set T of finite languages over Σ such

that for every L ∈ T holds nsc(L) < k but ntc(L) > k2

c·log k , with some constant c ≤ 360.

Moreover the size of this set is greater than 2k2/9−1.

We note that a similar but by much weaker bound can be obtained from recent work on
nondeterministic transition complexity [13]. A concrete example of a language family Kn

in B2n is presented there for which ntc(Kn) = Ω(2n+c
√

n) holds, provided c < 1
2 [13,

Theorem 1(iv)]. In contrast, Lemma 12 implies that for this language holds nsc(Kn) <
3√
2
2n. To compare this with the above result, set k = 3√

2
2n. Then we have still ntc(Kn) =

ω(k · poly(log k)), but also note that for every δ > 0 holds 2n+c
√

n = o(k1+δ).

Acknowledgments Thanks to Felix Fischer for some useful discussion on the subject.
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