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Abstract

The Turán bound [17] is a famous result in graph theory, which relates the independence number
of an undirected graph to its edge density. Also the Caro–Wei inequality [4, 18], which gives a
more refined bound in terms of the vertex degree sequence of a graph, might be regarded today
as a classical result. We show how these statements can be generalized to directed graphs, thus
yielding a bound on directed feedback vertex number in terms of vertex outdegrees and in terms
of average outdegree, respectively.
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1. Introduction

Not only in discrete mathematics, generalizing existing concepts and proofs has always been
a guiding theme for research. The great mathematician Henri Poincaré even considered this as
the leitmotiv of all mathematics.1

In particular, many results from graph theory were generalized to weighted graphs, digraphs,
or hypergraphs. Sometimes, providing such generalizations is an easy exercise; in other cases,
the main difficulty lies in formulating the “right generalization” of the original theorem. An
additional obstacle is imposed if the result we intend to generalize allows for several proofs or
equivalent reformulations. Then there are many roads to potential generalizations to explore, and
selecting the most promising one can be difficult. However, once the proper generalizations of
the used notions are found, the more general proof often runs very much along the same lines.

As we shall see, one such example is the Turán bound [17], which gives the number of edges
that a graph of order n can have when forbidding k-cliques as subgraphs. It allows for many dif-
ferent proofs and equivalent reformulations, see [1]. A dual version of Turán’s bound, regarding
the size of independent sets, was refined by Caro [4] and Wei [18]. Their result has subsequently
been generalized, by replacing the independent sets with less restricted induced subgraphs [3],
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respectively by replacing the concept of a graph with more general notions, namely weighted
graphs [16] and hypergraphs [5]. Here we complement these efforts by providing a generaliza-
tion of the Caro–Wei bound to the case of digraphs. From an algorithmic perspective, the new
result gauges a simple greedy heuristic for the minimum directed feedback vertex set problem.
In this way, the main result of this paper yields a formalized counterpart to the intuition that the
minimum (directed) feedback vertex number of sparse digraphs cannot be “overly large”.

2. Preliminaries

We assume the reader is familiar with basic notions in the theory of digraphs, as contained
in textbooks such as [10]. Nevertheless, we briefly recall the most important notions in the
following. A digraph D = (V, A) consists of a finite set, referred to as the set V(G) = V of
vertices, and of an irreflexive binary relation on V(G), referred to as the set of arcs A(G) = A ⊂
V ×V . The cardinality of the vertex set is referred to as the order of D. In the special case where
the arc relation of a digraph is symmetric, we also speak of an (undirected) graph. For a vertex v
in a digraph D, define its out-neighborhood as N+(v) = {u ∈ V | (u, v) ∈ A, u , v}, and its out-
degree as d+(v) = |N+(v)|. In-neighborhood and in-degree are defined analogously, and denoted
by N−(v) and d−(v), respectively. The degree d(v) of v is then defined as d(v) = |N−(v) ∪ N+(v)|,
and the total degree of v is defined as |N−(v)|+|N+(v)|. We note that our definition of vertex degree
agrees (on undirected graphs) with the standard usage of this notion in the theory of undirected
graphs, see e.g. [7]. For a subset of vertices U ⊆ V of the digraph D = (V, A), the subdigraph
induced by U is the digraph (U, A|U×U) obtained by reducing the vertex set to U and by restricting
the arc set to the relation induced by A on U. If a digraph H can be obtained in this way by
appropriate restriction of the vertex set of the digraph D, we say H is an induced subdigraph
of D. A simple path in a digraph is a sequence of k ≥ 1 arcs (v1,w1)(v2,w2) · · · (vk,wk), such that
for all 1 ≤ i < k holds wi = vi+1 and all start-vertices vi are distinct. If furthermore wk = v1,
we speak of a cycle. In particular, notice that each pair of opposite arcs (v,w)(w, v) in a digraph
amounts to a cycle. This convention is commonly used in the theory of digraphs, compare [10].

A digraph containing no cycles is called acyclic, or a directed acyclic graph (DAG). For a
vertex subset U of a digraph D, if the subdigraph induced by U is acyclic, then we call U an
acyclic set. In particular, if D[U] contains no arcs at all, then U is called an independent set. The
maximum cardinality among all independent sets in D is called the independence number of D.
Turán proved the following bound on the independence number of undirected graphs:

Theorem 1. Let D = (V, A) be an undirected graph of order n and of average degree d. Then D
contains an independent set of size at least

(
d + 1

)−1
· n.

Caro [4], and, independently, Wei [18] proved the following refined bound:

Theorem 2. Let D = (V, A) be an undirected graph of order n. Then D contains an independent
set of size at least

∑
v∈V (d(v) + 1)−1.

A set F of vertices in a digraph D = (V, A) is called a feedback vertex set if V \F is an acyclic
set. The feedback vertex number τ0(D) of D is defined as the minimum cardinality among all
feedback vertex sets for D. A simple observation is that for a digraph D of order n, the cardinality
of a maximum acyclic set equals n − τ0.
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3. Directed Feedback Vertex Sets and Vertex Degrees

Quite recently, several new algorithms were devised for exactly solving the minimum di-
rected feedback vertex set problem [6, 15]. But all known exact algorithms for this problem
share the undesirable feature that their worst-case running time is exponential—in the order n of
the input graph, or at least in the size of the feedback vertex number τ0. This is not surprising as
the problem has been known for a long time to be NP-complete, see [8].

Here, we consider the following simple greedy heuristic for finding a large acyclic set, and
hence a small feedback vertex set, in a digraph D. We call the algorithm Min-Greedy, in accor-
dance with a homonymous greedy heuristic on undirected graphs for finding a large independent
set, compare [9, 11].

Starting with D1 = D, we inductively define a sequence of digraphs Di, i ≥ 1, by first
choosing a vertex vi, such that vi has minimum outdegree in Di, and then deleting vi, along with
its out-neighborhood in Di, to obtain the digraph Di+1. We proceed in doing so until the vertex
set of Di is empty, and remember the vertices vi selected in each turn. These vertices form the
set S = {v1, v2, . . . vr}, which is the result finally returned by the procedure.

Before we analyze the quality of the above heuristic, we shall first prove its soundness.

Lemma 3. Let D be a digraph. Then the set S returned by Min-Greedy on input D is an acyclic
set in D.

Proof. Using the notions from the description of the algorithm, it suffices to show that for all
v j, vk ∈ S , the condition j < k implies that the digraph D has no arc (v j, vk). This claim implies
that along every simple path in D[S ] = D[{v1, v2, . . . , vr}], the vertex indices must appear in
decreasing order, thus ruling out the possibility of a cycle in D[S ].

To prove the claim, observe first that for all k > j, Dk is an induced subdigraph of D j+1. Thus
starting with D j+1 = D j − ({v j} ∪ N+(v j)), no vertex in the out-neighborhood of v j is present in
any of the subsequent digraphs. But vk is selected from Gk, hence is present in Gk and cannot be
in the out-neighborhood of v j.

Observe that the proof of Lemma 3 does not depend on the choice of a vertex of minimum
degree in Di for vi—the algorithm is sound if we choose any vertex in Di for vi. Now we are
ready to state our main result.

Theorem 4. Let D = (V, A) be a digraph of order n. Then Min-Greedy always finds an acyclic
set in D of size at least

∑
v∈V (d+(v) + 1)−1.

Proof. Using the notation from the algorithm, let vi be the selected vertex of minimum outdegree
in Di. Then for all vertices w ∈ N+

Di
(vi) ∪ {vi} holds

d+
D(w) + 1 ≥ d+

Di
(w) + 1 ≥ d+

Di
(vi) + 1 =

∣∣∣N+
Di

(vi) ∪ {vi}
∣∣∣ .

Thus, ∑
w∈N+

Di
(vi)∪{vi}

(
d+

D(w) + 1
)−1
≤

∑
w∈N+

Di
(vi)∪{vi}

(
d+

Di
(w) + 1

)−1

≤
∑

w∈N+
Di

(vi)∪{vi}

(∣∣∣N+
Di

(vi) ∪ {vi}
∣∣∣)−1

= 1.
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On the other hand, since the algorithm partitions the vertex set of D into a disjoint union of
subsets as

V(D) =

|S |⋃
i=1

(
N+

Di
(vi) ∪ {vi}

)
,

we have

∑
v∈V

(
d+

D(v) + 1
)−1

=

|S |∑
i=1

∑
w∈N+

Di
(vi)∪{vi}

(
d+

D(w) + 1
)−1
≤

|S |∑
i=1

1 = |S |,

as desired.

Just like the Caro–Wei bound [4, 18] for the independence number of undirected graphs
implies the Turán bound [17] by the inequality of arithmetic and harmonic means, we have
the following simple bound on the size of a maximum acyclic set, and hence, on the directed
feedback vertex number, in terms of average outdegree:

Corollary 5. Let D = (V, A) be a digraph of order n and of average outdegree d+. Then

τ0(D) ≤ n ·
(

1 −
(

d+ + 1
)−1

)
.

Proof. We show the equivalent statement that the digraph D has an acyclic set of cardinality at
least n/

(
d+ + 1

)
. The bound

∑
v∈V (d+(v) + 1)−1 from Theorem 4 looks different at first glance.

Nevertheless, it easily implies a bound in terms of average outdegree: recall that the inequality
of the harmonic, geometric and arithmetic mean (see [2, Chapter 16]) states that the geometric
mean of n positive numbers a1, a2, . . . , an is sandwiched between the harmonic mean and the
arithmetic mean of these numbers, that is,

n∑n
i=1 a−1

i

≤

 n∏
i=1

ai

1/n

≤

n∑
i=1

ai/n.

Now choose the ai to be the vertex degrees in D increased by 1 each. Then the outermost
inequality yields n∑

v∈V (d+(v)+1)−1 ≤
∑

v∈V (d+(v) + 1)/n. A very simple calculation completes the
proof.

Both the bound from Theorem 4 and the one from Corollary 5 are sharp, as witnessed, for
example, by the digraph of order k ·m that is obtained as the disjoint union of m many k-cliques.

Notice that we obtain the Caro–Wei bound and the Turán bound, respectively, if we restrict
the scope of the above statements to symmetric digraphs: for these, the size of a maximum
acyclic set is equal to the independence number, and the outdegree of each vertex is equal to its
degree (which in turn is equal to half its total degree).

As a final note, we remark that the Moon–Moser bound on the number of maximal indepen-
dent sets in undirected graphs [13] does not generalize to an analogous statement about maximal
acyclic sets; as a matter of fact, not even tournaments allow for a clear generalization [12]. In the
undirected case, the proofs of both the Caro–Wei bound and the Moon–Moser bound can be used
to derive Turán’s graph theorem, see [1]. A general theme for further research is to identify those
fragments of the theory of undirected graphs that generalize smoothly to the case of digraphs.
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