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Abstract. We continue our work [H. Gruber, M. Holzer: Provably
shorter regular expressions from deterministic finite automata (extended
abstract). In Proc. DLT, LNCS 5257, 2008] on the problem of finding
good elimination orderings for the state elimination algorithm, one of
the most popular algorithms for the conversion of finite automata into
equivalent regular expressions. Here we tackle this problem both from
the theoretical and from the practical side. First we show that the prob-
lem of finding optimal elimination orderings can be used to estimate the
cycle rank of the underlying automata. This gives good evidence that
the problem under consideration is difficult, to a certain extent. More-
over, we conduct experiments on a large set of carefully chosen instances
for five different strategies to choose elimination orderings, which are
known from the literature. Perhaps the most surprising result is that
a simple greedy heuristic by [M. Delgado, J. Morais: Approximation to
the smallest regular expression for a given regular language. In Proc.

CIAA, LNCS 3317, 2004] almost always outperforms all other strategies,
including those with a provable performance guarantee.

1 Introduction

The classical theorem of Kleene [15] implies that every n-state finite automa-
ton over alphabet Σ admits an equivalent regular expression. This conversion
problem has received quite some attention recently, see, e.g., [9–13]. One of the
most popular algorithms for this conversion is the so called state elimination
algorithm. There, states from the automaton are successively eliminated by re-
routing the in- and out-going transitions, which leads to an automaton with
transitions labeled by regular expressions. The sequence of states eliminated
thereby is called an elimination ordering or elimination sequence. If state elimi-
nation is applied to an n-state finite automaton, the resulting expression is of size
at most |Σ| ·4n. While this bound appears large, it is known that an exponential
blowup is necessary in the worst case [5, 10].

These theoretical results pushed the on-going quest for heuristics finding good
elimination orderings leading to short regular expressions [2, 11, 13]. Recently



improved upper bounds on the size of the regular expressions resulting from
deterministic finite automata (DFA) over small alphabets were obtained [11].
The latter are based on algorithms with a combinatorial flavor, and the analysis
is facilitated by results from extremal graph theory. Although all of the heuristics
choose an ordering for state elimination, only the algorithms from [11] lend
themselves to a theoretical analysis at all. Thus a theoretical comparison of the
different approaches would appear rather difficult.

In the present paper we continue our research on good elimination orderings
for the state elimination algorithm from the theoretical as well as the practi-
cal side by doing experiments on a large dataset. On the theoretical side, we
investigated the possibility whether designing an efficient approximation algo-
rithm would be within reach, but our theoretical results are somewhat negative.
Already weak approximation algorithms for the elimination orderings would con-
stitute a major step towards a resolving the approximability of the undirected
cycle rank problem, which is not completely understood yet [7]. Therefore we
implemented some of the heuristics and compared their performance on a large
but carefully chosen set of test instances. In short, the main empirical observa-
tions are the following: (1) Even the easiest heuristics provide a huge advantage
over randomly chosen elimination orderings, thus substantiating an observation
made earlier in [2] on very few instances. (2) Larger alphabets, and hence more
transitions, in the given DFAs result in larger regular expressions. (3) For ε-
NFAs obtained from regular expressions using the standard construction [14],
the transformation back into regular expressions is much easier than for ran-
dom DFAs. (4) Simplifying intermediate regular expressions on-the-fly as they
appear during the conversion appears not to have a striking effect on the result
on the average. Perhaps most surprisingly, it turned out that the simple greedy
heuristic by Delgado and Morais [2] almost always outperforms the algorithms
with provable performance guarantee from [11].

2 Definitions

We assume the reader to be familiar with basic notions in formal language the-
ory, in particular with those of ε-NFAs, NFAs, DFAs, regular expressions, and
the languages they denote. Here we follow exactly the notational conventions
from [14], with the following additions: The size or alphabetic width of a regular
expression r over the alphabet Σ, denoted by alph(r), is defined as the total
number of occurrences of letters of Σ in r. For a regular language L, we define
its alphabetic width, alph(L), as the minimum alphabetic width among all reg-
ular expressions describing L. When working with ε-NFAs, we will often assume
that the given automaton A is normalized in the sense that A has the state set
Q∪{s, t} where s is the start state and has no incoming transitions, and t is the
sole accepting state and has no outgoing transitions. This can be achieved by a
simple construction if needed. As usual, two finite automata are called equivalent
if they accept the same language.



Now we present an algorithm scheme that became known as state elimination,
cf. [19]. Let Q be the state set of a finite automaton A. For a subset U of Q and
an input word w ∈ Σ∗, we say that A can go on input w from state j through U
to state k, if it has a computation on input w taking A from state j to k without
going through any state outside U . Here, by “going through a state,” we mean
both entering and leaving. Now let LU

jk be the set of words on which A can go
from state j to state k through U . Observe that in particular for a normalized
finite automaton A then holds LQ

st = L(A). The state elimination algorithm
scheme proceeds as follows: We maintain a working set U and a matrix the
entries of which are regular expressions rU

jk denoting the languages LU
jk. The

algorithm proceeds in rounds: Beginning with U = ∅, we enlarge the set U by
adding a new state i ∈ Q\U in each round. The round consists of computing the

new entries denoting the languages L
U∪{i}
jk , for each j, k satisfying j, k /∈ U ∪{i},

by letting rU ·i
jk = rU

ji · (rU
ii )

∗ · rU
ik, where U · i denotes the ordering induced by U

followed by i (cf. [11]). Here it is understood that the resulting expression on the
left-hand side equals ∅ if rU

ji or rU
ik denotes the empty set. If the given automaton

was normalized, we finally end up with a regular expression describing LQ
st, a set

equal to L(A). Observe that the above algorithm requires an ordering in which
the states i are to be processed one after another; such an ordering on Q is called
an elimination ordering. It is well known that the choice of ordering can greatly
influence the size of the resulting regular expressions, cf. [2, 19].

3 A Theoretical Result on Elimination Orderings

This section is devoted to the question whether we can find an optimum, or
at least an approximately optimum elimination ordering in polynomial time.
Sakarovitch stated that this is probably a hard combinatorial problem [19]. Al-
though we cannot provide proper evidence that this problem is algorithmically
intractable (such as NP-hardness), our result indicates that even designing an
approximation algorithm with a reasonable performance guarantee is a challeng-
ing research problem.

Definition 1. The cycle rank of a digraph G = (V,E), denoted by cr(G), is
inductively defined as follows: (1) If G is acyclic, then cr(G) = 0. (2) If G is
strongly connected and not acyclic, then cr(G) = 1+minv∈V {cr(G−v)}. (3) If G
is not strongly connected, then cr(G) equals the maximum cycle rank among all
strongly connected components of G. The undirected cycle rank of G is defined
as the cycle rank of its symmetric closure.

We will relate the undirected cycle rank to elimination orderings in the fol-
lowing. To this end, recall the following lemma from [11]:

Lemma 2. Let A be a normalized ε-NFA with state set {s, t} ∪ Q, and let G
be the digraph underlying the transition structure of A. Assume U ⊆ Q can
be partitioned into two sets T1 and T2 such that the induced subdigraph G[U ]
falls apart into mutually disconnected components G[T1] and G[T2]. Then for



the expression rT1·T2

jk obtained by elimination of the the vertices in T1 followed

by elimination of the vertices in T2 it holds rT1·T2

jk
∼= rT1

jk + rT2

jk , for all states
j, k ∈ Q \ U .

Using this lemma, we can prove that the undirected cycle rank of the under-
lying graph is a parameter that renders the problem of converting ε-NFAs into
regular expressions fixed-parameter tractable—not in the usual sense of compu-
tational, but rather of descriptional complexity. We omit the proof of the next
two statements due to space constraints.

Theorem 3. Let A be a normalized ε-NFA with state set {s, t} ∪ Q, let c be a
positive integer, and let G be its underlying (di)graph. If U ⊆ Q is such that G[U ]
has undirected cycle rank at most c, then there is an elimination ordering for U
which yields, for all states j, k in Q \ U , regular expressions rU

jk of size at most
|Σ| · 4c · |U |.

The problem in transforming the above result into an algorithm is that de-
termining the undirected cycle rank of a graph or digraph is NP-complete and
the best known approximation algorithm has, for a given graph with n vertices
and (unknown) undirected cycle rank c, a performance ratio of O(

√
log c · log n),

see [7]. It turns out that merely estimating the order of magnitude of the ex-
pression size resulting from an optimum ordering is by no means easier:

Lemma 4. Given an undirected graph G on n vertices and of (unknown) cycle
rank c, we can construct in polynomial time a DFA A such that the optimum
elimination ordering for A yields an equivalent regular expression r with

1

3
· c − 2 ≤ log alph(r) ≤ 2 · c + log n.

This shows that the optimum ordering expression size can be used as a pretty
good estimate for the cycle rank, and already weak approximation algorithms
for the former problem would constitute a major step towards a more complete
understanding of the approximability of the undirected cycle rank problem, com-
pare [7].

4 Algorithms for Choosing Elimination Orderings

When eliminating a state with m entering and n exiting transitions, the resulting
digraph has up to (m − 1) · (n − 1) newly added edges. Intuitively, we want to
keep the intermediate digraphs produced by the elimination process as sparse as
possible. Thus it may be advisable to delay the elimination of heavily trafficked
states as long as possible, as noted already by different authors [2, 13, 19]. An
extremely simple strategy is to order the states by a measure that is defined as
the number of ingoing edges times the number of outgoing edges (Algorithm 0A).
An easy observation is that this measure can of course change as the elimination
proceeds, and a refined strategy recomputes these measures on the intermediate



digraphs after each elimination round (Algorithm 0B). A further refinement
devised in [2] works with a measure function, which also takes the size of the
intermediate regular expressions into account (Algorithm DM)—we refer to [2]
for details.

Recently, two new ordering algorithms were discovered in [11], which were
also the first ones to come with a provably better performance guarantee on
the resulting regular expressions, at least in case the given automata are deter-
ministic and over not too large alphabets. Turán’s Theorem in extremal graph
theory states that sparse (di)graphs have independent sets of linear size, and
that these can be eliminated at low cost and can be found by a simple greedy
algorithm. This gives rise to the following algorithm (Algorithm IS): First, we
find a huge independent set S in the graph underlying the automaton. Then we
order the states in S arbitrarily, and eliminate them. For any remaining states
we again find a huge independent set in the resulting digraph, and so on. It is
shown in [11] that this algorithm is guaranteed to produce regular expressions
of size at most O(2.602n), when given a DFA over binary alphabet.

A recent generalization of Turán’s theorem by Edwards and Farr [3] concerns
induced subgraphs of (undirected) treewidth at most 2 instead of independent
sets. There the guaranteed size is three times larger, and again these can be
eliminated at low cost and can be found by a simple greedy algorithm. Large
induced subgraphs of low treewidth are useful, because it was proved in that
these admit orderings, similar to independent set, such that eliminating them in
the beginning can incur an increase in intermediate expression size bounded by
a polynomial factor. The proof of that fact does not rely directly on tree decom-
positions, but proceeds by finding small balanced separators, and then recurring
on the separated subgraphs. Following [11], this suggests the following algo-
rithm (Algorithm B3S): First, we find a huge induced subgraph S of treewidth
at most 2 in the graph underlying the automaton. Then we order the set S by
finding a balanced 3-way separator X for S. If C1, C2 and C3 are the parts
of S separated by X, the resulting ordering is of the form C1, C2, C3,X, where
the ordering for the component Ci is found recursively, by finding a balanced 3-
separator for Ci, and so on. Then we eliminate S. Finally, we eliminate Q \ S
with an “arbitrary” ordering; to optimize the latter, we used the heuristic DM on
Q \ S. For finding huge independent sets and induced subgraphs of treewidth 2,
we used a software library developed by Kerri Morgan [17]. It was shown in [11]
that this approach allows for a guaranteed performance of O(1.742n) on DFAs
over binary alphabet. We also note that all of the algorithms run in output poly-
nomial time. In particular, they run in polynomial time provided they produce
a regular expression of polynomial size.

5 Experiments

We have conducted experiments with the algorithms described in the previous
section plus an additional random elimination ordering (RA). We have imple-
mented the algorithms in C++, using the Automata Standard Template Library



(ASTL) [16] for representation and manipulation of automata. We have chosen
the library ASTL to represent the NFAs and the intermediate results during
state-elimination mainly because of the cursor concept and because it allows
arbitrary input alphabets. This facilitates a direct implementation of the algo-
rithms by programming appropriate iterators (cursors) over the state set. To
gain performance, regular expressions are not stored as syntax trees, but as di-
rected acyclic graphs, allowing for sharing common subexpressions. Similar ideas
were used in [8]. Tests have shown that this allows us to compute regular ex-
pressions of very large alphabetic width—up to 1020—while still having small
memory footprint. The front end for reading the input NFAs or regular expres-
sions is a lex and yacc generated parser. This resulted in an overall size of
roughly 4000 lines of code. The tests are performed on a quad core Intel Xeon
CPU E5345 with 2.33 GHz equipped with 16 GB RAM running Linux as an
operating system. To limit the number of bugs in our program, unit-tests were
performed with the help of the Diagnostics framework.3

Moreover, simplification of the regular expressions constructed during state
elimination can be en- or disabled. Unless stated otherwise, all tests were run
with simplification turned on. The simplification process is described by a term
rewriting system (TRS) which works modulo ACIZ-identities4 and some further
identities, namely r · ε = ε · r = r, a · ∅ = ∅ · r = ∅, plus identities that deal
with the Kleene star, which are ∅∗ = ε, ε∗ = ε, (r∗)∗ = r∗, (r + ε)∗ = r∗,
(r + s∗)∗ = (r + s)∗, and (r∗s∗)∗ = (r + s)∗. They are similar to those used
in [8]. Notice that the associativity laws can be built into the data structure by
using list data types. For implementing commutativity we defined, apart from
the above notion of equivalence, also an appropriate order on the subsorts of
expressions.

Our test instances are chosen as follows: We used randomly generated DFAs
for different numbers of states and alphabet sizes and regular expressions of
varying alphabetic width. Moreover, we have also performed tests on special
automata instances that appeared in the literature—we will discuss this issue
in more detail below. To randomly generate DFAs (more precisely initially con-
nected DFAs) we used the FAdo toolkit [1], while the random generation of
regular expressions was done by GenRGenS [18]. The latter software was orig-
inally designed to randomly generate genome sequences and supports several
classes of models, including context-free grammars. Observe that the generation
of DFAs is uniformly at random. A running time limit for all tests was not estab-
lished and all tests were finished after about 30 CPU days. All test instances and
the source code are available online at http://code.forsyte.de/automata for

3 Diagnostics, developed by the “Formal Methods in Systems Engineering” group at
Technische Universität Darmstadt, is a unified framework for code annotation, log-
ging, program monitoring, and unit-testing. Download and more information is avail-
able at http://code.forsyte.de/diagnostics.

4 The set of equations r + (s + t) = (r + s) = t, r + s = s + r, r + r = r, and r + ∅ = r

are commonly called ACIZ-identities or -axioms, where letter A is an abbreviation
for associativity, C for commutativity, I for idempotency, and Z for zero absorption.



download. The unambiguous grammar used for generating regular expressions
is included with the download.

For the DFA samples we used automata with 5 ≤ n ≤ 50 states—in steps
of 5 states—and input alphabets with 1 ≤ k ≤ 10 symbols. We only show
the diagrams for k ∈ {2, 3, 5, 10}. For each parameter n and k, a sample of
1000 random instances was generated and tested. The results are summarized
in Figure 1 and can be interpreted as follows.

At first glance one observes that larger alphabet size, and hence more transi-
tions, in the DFAs result in larger regular expressions. This is of course expected.
Taking a closer look, one further observes that the Algorithm 0B with the simple
greedy strategy and the Algorithm DM with the more sophisticated measure
function of Delgado and Morais [2] almost always outperforms the Algorithms IS

and B3S with provable performance guarantees—indicated by fitted appropriate
exponential functions—from [11], on the average. This was a nice surprise and
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Fig. 1. Alphabetic size (y-axis, logarithmically scaled) in relation to the number
of states (x-axis, linearly scaled) for DFAs with 5 ≤ n ≤ 50 states—in steps
of 5 states—and input alphabet size 2 (upper left), 3 (upper right), 5 (lower
left), and 10 (lower right) for the random ordering RA and Algorithms 0A, 0B,
DM, IS, and B3S. Here a vertical bar for an algorithm indicates the maximal
occurring alphabetic width by its height. Moreover it also shows the alphabetic
width on average indicated by the appropriate mark symbol.



not really expected. Apart from the random ordering RA, only Algorithm 0A

is significantly worse than the other tested algorithms, not only on the average,
but also on the worst-case behavior. Again, not a real surprise, since this algo-
rithm is too static, by not taking changes of the underlying graph during the
elimination process into account. Moreover, another effect, not depicted here,
was encountered during our test: Simplifying of intermediate regular expressions
does not have any significant effect on the outcome of the conducted experi-
ments. Possible reasons for this may be that we have run our tests on DFAs,
not NFAs, and that we have excluded more powerful simplification rules such as
r · s+ r · t = r · (s+ t). We plan to conduct further experiments in this direction.

Next we summarize our results on special instances, which were already dis-
cussed in the literature. First we have reproduced the experiments done in [2] on
automata with transformation monoids from POIn and POPIn of all injective
order preserving and orientation preserving, respectively, partial transformations
on a chain with n elements. Moreover, we have considered DFAs whose transi-
tion structure is a n × n grid graph with a input alphabet of size 4, one letter
for each direction. Recently, these automata, referred to as Gridn, were used to
prove lower bounds on the alphabetic width for the conversion of planar DFAs
to regular expressions [10]. Finally, we also considered DFAs accepting the lan-
guages Ln = Σ∗ \(Σ∗fnΣ∗), where Σ = {a, b} and fn is the nth finite Fibonacci
word defined by f0 = a, f1 = ab, and fn = fn−1 · fn−2, for n ≥ 2. These au-
tomata denoted by Fibn were proposed in [6] as possibly difficult candidates
for converting DFAs into regular expressions. Some of the obtained results are
summarized in Table 1. Here a similar situation shows up as for random in-
stances. The Algorithm DM is superior to the other algorithms. Furthermore,
the automata Fibn don’t show the conjectured behavior as difficult candidates
for converting DFAs into regular expressions. Here the grid automata Gridn are
much more difficult as indicated by the enormously large alphabetic width of at
most 1.1 · 1017 produced by the Algorithm IS.

We also studied the setup when starting with a regular expression instead of a
DFA. For the conversion from a regular expression to a finite automaton we have
implemented Thompson’s algorithm [14]. Again Algorithm DM outperforms all

Instance
Algorithm (A) (B) (C) (D) Grid3 Grid12 Fib3 Fib12

RA 1304 93688 7426 1404252 7516 ≤ 1.3 · 1019 7 2119
0A 1121 54625 2425 819934 1988 ≤ 4.5 · 1018 11 70877
0B 634 25816 882 13240 634 ≤ 1.1 · 1018 5 377
DM 491 8989 704 11528 622 ≤ 7.7 · 1017 5 377
IS 535 9750 929 14701 634 ≤ 1.1 · 1017 8 1584
B3S 768 11663 793 13062 958 ≤ 1.2 · 1019 9 1586

Table 1. Results on the alphabetic width for some specific DFAs instances that
appeared already in the literature [2, 6, 10]. In particular, (A), (B), (C), (D) de-
note the automata Min(POI4[1, 20]), Min(POI5[1, 125]), Min(POPI4[1, 60])
and Min(POPI5[1, 70]) as they appear in [2].
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Fig. 2. Blowup (y-axis, linearly scaled) in relation to the length n (x-axis, lin-
early scaled) of the regular expression (RE) for 10 ≤ n ≤ 100 in steps of 10
caused by the transformation RE → NFA → RE for input alphabet size 2 (up-
per left), 3 (upper right), 5 (lower left), and 10 (lower right) for the random
ordering RA and Algorithms 0A, 0B, DM, IS, and B3S. The length of a reg-
ular expression is defined to be the number of terminal symbols. Here a vertical
bar for an algorithm indicates the maximal occurring blowup. Moreover it also
shows the average bloat factor indicated by the corresponding mark symbol.
Missing lines for RA indicate that even the average blowup is greater than 40.

the other algorithms; but note that the resulting expressions are much smaller
than for random DFAs. For regular expressions of length 10 ≤ n ≤ 100 in
steps of 10 and input alphabet size 1 ≤ k ≤ 10 the size blowup is depicted in
Figure 2—again only the diagrams for k ∈ {2, 3, 5, 10} are shown.

Whether using a different conversion algorithm than Thompson’s can affect
the obtained results is not clear and has to be verified by further experiments.
Finally, we mention that we believe that all of the algorithms under consideration
would equally benefit from the preprocessing techniques presented in [13]; in
particular we do not expect that they have a noticeable effect on random DFA
input.
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