
On the Average State and Transition

Complexity of Finite Languages ⋆

Hermann Gruber a,1 Markus Holzer b

aInstitut für Informatik, Ludwig-Maximilians-Universität München,
Oettingenstraße 67, D-80538 München, Germany

email: gruberh@tcs.ifi.lmu.de
bInstitut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany
email: holzer@in.tum.de

Abstract

We investigate the average-case state and transition complexity of deterministic
and nondeterministic finite automata, when choosing a finite language of a certain
“size” n uniformly at random from all finite languages of that particular size. Here
size means that all words of the language are either of length n, or of length at
most n. It is shown that almost all deterministic finite automata accepting finite
languages over a binary input alphabet have state complexity Θ(2n

n), while nonde-
terministic finite automata are shown to perform better, namely the nondetermin-
istic state complexity is in Θ(

√
2n). Interestingly, in both cases the aforementioned

bounds are asymptotically like in the worst-case. However, the nondeterministic
transition complexity is shown to be again Θ(2n

n). The case of unary finite lan-
guages is also considered. Moreover, we develop a framework that allows us to
investigate the average-case complexity of operations like, e.g., union, intersection,
complementation, and reversal, on finite languages in this setup.

⋆ This paper is a completely revised and expanded version of a paper presented at
the 8th Workshop on Descriptional Complexity of Formal Systems (DCFS) held in
Las Cruces, New Mexico, USA, June 21–23, 2006
1 Part of the work was done while the author was as student at Institut für Infor-
matik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei
München, Germany.

Preprint submitted to Elsevier 16 April 2007

1 Introduction

The study of descriptional complexity issues for finite automata dates back
to the mid 1950’s. One of the earliest results is that deterministic and non-
deterministic finite automata are computationally equivalent, and that non-
determinism can offer exponential state savings compared to determinism,
see [19]—by the powerset construction one increases the number of states
from n to 2n, which is known to be a tight bound. Motivated by several ap-
plications and implementations of finite automata in software engineering,
programming languages and other practical areas in computer science, the
descriptional complexity of finite automata problems has gained new interest
during the last decade. Tight upper bounds for the deterministic and non-
deterministic state complexity of many operations on regular languages are
known [14,19,20].

In many applications the regular languages are actually finite as, e.g., in natu-
ral language processing or constraint satisfaction problems in artificial intelli-
gence. This prompted quite some research activity on finite languages—see [19]
for an overview. Obviously, the length of the longest word in a finite language
is a lower bound on the number of states of a finite automaton accepting a
finite language. In fact it can be even exponential in the length of the longest
word in the finite language as shown in [3,6]. To be more precise, there is
a finite language L over a binary alphabet whose longest word is of length n
such that the minimal deterministic finite automaton accepting L needs Θ(2n

n
)

states. For the state savings for changing from a deterministic finite automa-
ton to a nondeterministic finite automaton the bound for automata accepting
finite languages is slightly weaker than in the general case. In [17] it was shown
that one can transform every nondeterministic finite automaton accepting a
finite language over a binary alphabet into an equivalent deterministic finite
automaton, thereby increasing the number of states from n to Θ(

√
2n), and

this bound was shown to be sharp. More results on the state complexity of
operations on finite languages can be found in [4,14].

However, most of the work on descriptional complexity of regular languages
yields worst-case results. To our knowledge, very few attempts have been made
in order to understand certain aspects of the average behavior of regular lan-
guages [2,5,7,16]. Average-case complexity turns out to be much harder to
determine than worst-case complexity, as it is currently unknown how many
non-isomorphic n-state automata there are over a two letter alphabet. For a
recent survey on the problem of enumerating finite automata we refer to [9].
However, for finite automata with a singleton letter input alphabet the enu-
meration problem was solved in [16], where also the average-case state com-
plexity of operations on unary languages was studied. In this paper we concen-
trate on the average-case descriptional complexity of deterministic and non-

2

deterministic finite automata accepting finite languages. By choosing a finite
language L of a certain size (length of the longest word) uniformly at random,
one can treat the size of the minimal deterministic or nondeterministic finite
automaton accepting L as a random variable. Observe that our setup is dif-
ferent to that used in [16]. There deterministic finite automata are chosen at
random among all n-state deterministic finite automata, whereas our setup is
centered at languages. Due to this difference in the model, the results cannot
be directly compared to each other.

At first glance we show that almost all finite languages over a k-letter alphabet
with word length at most n have state complexity Θ(kn

n
), which is asymptot-

ically like the worst-case. Then we introduce a stochastic process to generate
finite languages, which is shown to be equivalent to the above mentioned setup
choosing a finite language uniformly at random. This stochastic language gen-
eration process allows us to investigate operations on finite languages from the
average-case point of view. It turns out that, for binary alphabets, the expected
value of the state complexity of a deterministic finite automaton accepting the
union, intersection, or complement of a finite language is larger than c· 2n

n
, as n

tends to infinity, where c depends only on the operation and the probability of
the stochastic processes generating the operands mentioned above. Moreover,
also the average-case complexity of unary languages is investigated. Finally,
nondeterministic finite automata are considered. There average-case bounds
on deterministic and nondeterministic state complexity, as well as nondeter-
ministic transition complexity on finite languages are obtained. It turns out
that the nondeterministic state complexity is in Θ(

√
2n) on the average, which

is slightly better compared to the deterministic case. However, interestingly
we show that the number of transitions needed is again Θ(2n

n
) in most cases.

Hence, the overall size, i.e., the length of a description of a finite automaton, is
from the average-case complexity point of view the same for both deterministic
and nondeterministic finite automata.

2 Preliminaries

First we recall some definitions from formal language and automata theory;
see, e.g., [19]. In particular, let Σ be an alphabet and Σ∗ the set of all words,
including the empty word λ, over the alphabet Σ. The length of a word w is
denoted by |w|, where |λ| = 0. The reversal of a word w is denoted by wR and
the reversal of a language L ⊆ Σ∗ by LR, which equals the set {wR | w ∈ L }.
Furthermore let Σ≤n = {w ∈ Σ∗ | |w| ≤ n } and Σn = {w ∈ Σ∗ | |w| = n }.
For any set S, we use the notation P(S) to denote the powerset of S. In this
paper we are interested in certain families of finite languages over a given
input alphabet Σ, namely the powersets P(Σn) and P(Σ≤n). In particular, in
the case of a binary input alphabet, we write (1) Fn = P({0, 1}≤n) of size

3

|Fn| = 22n+1−1, and (2) Bn = P({0, 1}n) of size |Bn| = 22n

.

A nondeterministic finite automaton is a 5-tuple A = (Q, Σ, δ, q0, F), where Q
is a finite set of states, Σ is a finite set of input symbols, δ : Q × Σ → 2Q is a
transition function, q0 ∈ Q is an initial state, and F ⊆ S is a set of accepting
states. The transition function δ is extended to a function δ : Q×Σ∗ → 2Q in
the natural way, i.e., δ(q, λ) = {q} and δ(q, aw) =

⋃

q′∈δ(q,a) δ(q′, w), for q ∈ Q,
a ∈ Σ, and w ∈ Σ∗. A nondeterministic finite automaton A = (Q, Σ, δ, q0, F)
is deterministic, if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. In this case we
simply write δ(q, a) = p instead of δ(q, a) = {p}. The language accepted by a
finite automaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅ }. Two automata
are equivalent if they accept the same language.

For a regular language L, the deterministic (nondeterministic, respectively)
state complexity of L, denoted by sc(L) (nsc(L), respectively) is the minimal
number of states needed by a deterministic (nondeterministic, respectively) fi-
nite automaton accepting L. The transition complexity is analogously defined
as the state complexity and we abbreviate the deterministic (nondeterministic,
respectively) transition complexity of a regular language L by tc(L) (ntc(L),
respectively). To be more precise, for a nondeterministic finite automaton
A = (Q, Σ, δ, q0, F) the number of transitions equals |{ (q, a, p) | p ∈ δ(q, a) }|.
This naturally extends to deterministic finite automata. Obviously, a deter-
ministic finite automaton with n states and input alphabet Σ has exactly |Σ|·n
transitions, because every state has exactly |Σ| transitions leaving it. More-
over, it is easy to see that for deterministic finite automata the state minimal
finite automaton is also transition minimal. Hence, in the forthcoming we will
only consider the nondeterministic transition complexity of regular languages.

Moreover, we assume the reader to be familiar with the basic notations in
probability theory as contained in textbooks such as [18]. In particular, we
make use of Markov’s inequality and Chernoff’s bound.

Theorem 1 (1) Let X be a random variable taking on nonnegative values.
Then for every t ∈ IR+ holds

P[X ≥ t] ≤ E[X]

t
.

(2) Assume X is a binomially distributed random variable. Then for 0 < d <
1 holds

P

[∣

∣

∣

∣

∣

E[X] − X

E[X]

∣

∣

∣

∣

∣

> d

]

< 2 exp

(

−d2
E[X]

3

)

.

4

3 Average Complexity of Deterministic Finite Automata

3.1 The Basic Model: Choosing a Language Uniformly at Random

A natural language family to study the descriptional complexity of finite lan-
guages is the family of languages over a fixed alphabet whose longest word
has a certain length. This leads us to the language families Fn and Bn, when
restricting to two-letter alphabet. These language families have recently at-
tracted some research interest, see, e.g., [1,3,6,13]. What concerns the worst-
case deterministic state complexities of the aforementioned language families
the following is known: In [6] the maximum deterministic state complexity
among all languages in Bn was investigated. Later, in [3] their results were in
parts generalized to the language family Fn, and moreover to larger alphabet
sizes. The relevant result on the finite language family under consideration
reads as follows:

Theorem 2 Let Σ be an alphabet of size k, and let M(Σ≤n) denote the max-
imum deterministic state complexity among all languages in P(Σ≤n). Then
M(Σ≤n) ≤ (1 + o(1))kn+1

dkn
, as n tends to infinity, with dk = k

(k−1)2 log2 k
.

The respective authors also gave an asymptotic lower bound for Bn, and more
complex but precise formulae for M(Σn) and M(Σ≤n). For our purposes these
asymptotic upper bounds are sufficient. The state complexity in the best case
is easily determined to be 1, which is uniquely attained by the empty language.
For the worst-case, it was noted in [3] that

“[. . .] several automata can reach the maximal upper bound for the state
complexity. These automata are very similar, but it is very difficult to de-
termine the languages or the number of these languages.”

We show that indeed almost every language in P(Σn) or P(Σ≤n) has deter-
ministic state complexity in Θ(kn

n
), and that the worst-case upper bound is

also tight up to a factor of (1 + o(1)) k2

(k−1)
on the average.

Theorem 3 Let Σ be an alphabet size k, 0 < δ < 1, and ck = (k − 1) log k.
Then the number of languages acceptable by deterministic finite automata with
at most (1 − δ) kn

ckn
states is in o(|P(Σn)|), and hence o(|P(Σ≤n)|).

PROOF. Let gk(m) be the function counting the number of languages over Σ
acceptable by deterministic finite automata with at most m states. In [8,

5

Theorem 9] it was shown that gk(m) ≤ m2m mkm

m!
. A simple estimate yields

log m! >
∫ m

1
log x dx = m log m − 1

ln 2
(m − 1),

and using 1
ln 2

< 3
2
, we obtain log(gk(m)) < (k−1)m log m+ 5

2
m+log m. Thus

for every constant δ with 0 < δ < 1,

log gk

(

(1 − δ)
kn

ckn

)

< (1 − δ)
(

1 +
5

2ckn

)

kn + n log k = (1 − δ)kn + o(kn),

and for n large enough, this is much smaller than kn = log |P (Σn) |, that is

log gk

(

(1 − δ)
kn

ckn

)

− log |P (Σn) |

tends to −∞. We can deduce that limn→∞ gk((1 − δ) kn

ckn
)/|P (Σn) | = 0 for

every such δ. 2

As a corollary, we get:

Corollary 4 Let Σ be an alphabet size k and ck = (k − 1) log k. If L is
a language chosen from P(Σn) (P(Σ≤n), respectively) uniformly at random,
then for large enough n holds

E[sc(L)] ≥ (1 − o(1))
kn

ckn
.

PROOF. By Theorem 3 holds limn→∞ P

[

sc(L) > kn

ckn

]

= 1. The result follows
by applying Markov’s Inequality. 2

3.2 A Different Probabilistic Model for Finite Languages

The considerations in the previous section can be seen as a model of random
finite languages which are subsets of Σn or Σ≤n, where all languages in the
respective set are equiprobable. A different model is based on a stochastic
process: Given a finite set of words S, we generate a random language L by
deciding for each word w ∈ S at random whether w ∈ L or not. This leads us
to the following definition:

Definition 5 Let Σ be a finite alphabet and S be a finite set of words over Σ.
Assume 0 < p < 1. For every w ∈ S, we define a Bernoulli experiment
with two possible events w ∈ L and w /∈ L, such that P[w ∈ L] = p and

6

P[w /∈ L] = 1 − p. Let L denote the random event (language) obtained by
carrying out this experiment independently for each word in S. Then we say
that L is (S, p)-distributed.

In fact, it is not hard to see that the equiprobable model from the previ-
ous subsection conicides with the above described Bernoulli experiment with
parameter p = 1

2
.

Lemma 6 Let Σ be a finite alphabet, S a finite set of words over Σ. The
random language L is (S, 1

2
)-distributed if and only if all subsets of S are

equally probable.

PROOF. Assume we pick a subset L ⊆ S at random such that all subsets
of S are equally probable. Note that exactly half of the subsets of S contain
the word w, since there is a bijection between the subsets containing w and
the subsets not containing w. Thus for every word w in S holds P[w ∈ L] = 1

2
.

For the other direction, assume L is (S, 1
2
)-distributed. Then for every L ⊆ S

holds P[L] = (1
2
)|L|(1 − 1

2
)|S|−|L| = 1

2|S| . 2

The latter model has some conceptual advantages for the average case study of
the descriptional complexity of operations on finite languages. If we randomly
and independently pick two languages L1 and L2 in S, then for each word w
in S holds: P[w ∈ L1 ∩ L2] = 1

4
. More generally spoken, we find the following

result:

Lemma 7 Let Σ be a finite alphabet, S be a finite set of words over Σ, and
0 < p1, p2 < 1. If L1 and L2 are independent (S, p1)-distributed and (S, p2)-
distributed languages, then L1 ∩L2 is (S, p1p2)-distributed, L1 ∪L2 has distri-
bution (S, p1 + p2 − p1p2), the distribution of LR

1 is (S, p1), and that of S \ L1

is (S, 1 − p1). 2

We proceed with an easy, yet useful observation about the cardinality of L,
namely that |L| is a binomially distributed random variable with parameters
(2|S|, p). The deterministic state complexity sc(L) is also a random variable.
For (S, p) distributions, of course our main interest is devoted to the cases
S = Σn and S = Σ≤n. For ease of exposition, we will discuss only the case of a
binary alphabet in the rest of this work, though some of the results can readily
be generalized to the case of larger alphabets. So, unless stated otherwise, Σ
is a binary alphabet in what follows. Next, we give an exact formula for the
expected value in the case S = Σn.

7

Theorem 8 Let L be a (Σn, p)-distributed language and 0 ≤ p ≤ 1. Then 2

E[sc(L)] = 1 +
n
∑

i=0

2n−i

∑

j=1

(

2n−i

j

)

(

1 −
(

1 − pj(1 − p)2n−i−j
)2i
)

.

PROOF. For 0 ≤ i ≤ n, every word w of length i has a right (or residual)
language Lw = { x ∈ Σn−i | wx ∈ L } w.r.t. L. Observe that Lw is (Σn−i, p)-
distributed in our model. Leave w fixed for a moment, with |w| = i. If we fix
an arbitrary language X ⊆ Σn−i, and set j = |X| then

P[Lw = X] = pj(1 − p)2n−i−j (1)

Resorting to the Myhill-Nerode theorem, we say that two words w and w′ are
nonequivalent, if Lw 6= Lw′ . Then the number of pairwise nonequivalent words
equals sc(L). Any two words of different length are clearly nonequivalent in
our setup, (unless their right language is empty, a case of which we have to
take extra care) so we discuss the expected value of the random variable Yi

denoting the number of pairwise nonequivalent prefixes in Σi, for 0 ≤ i ≤ n,
analyze the effect of possibly empty right languages, and then sum up over
all i.

To each prefix w with |w| = i, we randomly assign a language Lw, where the
probability for each choice is given by Equation 1. This can be seen in analogy
to throwing 2i balls (the prefixes) randomly into 22n−i

bins (the subsets of Σn−i

as candidates for being a right language), whose probability distribution is
given above. We then ask for the expected number of nonempty bins, which
equals the number of distinct right languages. Clearly, the expected number of
nonempty bins is the total number of bins (that is, 22n−i

) minus the expected
number of empty bins. The empty bins can be further partitioned according to
their “size,” which is the cardinality of the corresponding right language Lw.
So we turn to the empty bins: The probability that a candidate X ⊆ Σn−i

with |X| = j is not equal to Lw for any w of length i is

P





∧

w∈Σi

Lw 6= X



 =
∏

w∈Σi

P[Lw 6= X] =
(

1 − pj(1 − p)2n−i−j
)2i

,

as the 2i languages Lw, for w ∈ Σi, are identically distributed and chosen
independently. As there are

(

2n−i

j

)

subsets of Σn−i, the number of empty bins
of size j can be modeled as a Bernoulli chain. Since each bin is empty with

the above probability, its expectation equals
(

2n−i

j

) (

1 − pj(1 − p)2n−i−j
)2i

. By
the summation formula for the expected value, we get

2 Here we adopt the usual convention 00 := 1 (see, e.g., [12, p.162]).

8

E[Yi] = 22n−i −
2n−i

∑

j=0

(

2n−i

j

)

(

1 − pj(1 − p)2n−i−j
)2i

=
2n−i

∑

j=0

(

2n−i

j

)

(

1 −
(

1 − pj(1 − p)2n−i−j
)2i
)

.

Beware that the theorem is not obtained by simply summing over all E[Yi].
Before we undertake the final summation, we have to analyze the instances
of empty right languages. So we take a look of the term j = 0 in the above
sum, in order not to double-count the dead state in the minimal deterministic
finite automaton. In a first try, we simply discard this term from the sum, and
do not count the dead state for each slice i. This is the expected number of
non-dead states in the minimal deterministic finite automaton for L. So we
under-estimated the expected value of sc(L). By how much? For every finite
language, the minimal deterministic finite automaton definitely has a dead
state, so we simply have to add 1. 2

Note that the above result generalizes to k-symbol alphabets by replacing each
occurrence of 2i with ki and each occurrence of 2n−i with kn−i, respectively.
In the case p is constant while n grows, we can also derive an asymptotic
lower bound on the expected value of the state complexity. We write H(p) =
−p log(p)− (1− p) log(1− p) to denote the entropy of the outcome of flipping
a p-biased coin.

Theorem 9 Assume 0 < p < 1, and S = Σn or S = Σ≤n. Let L be a (S, p)-
distributed language. Then

E[sc(L)] ≥ (H(p) − o(1))
2n

n
.

PROOF. We will prove first that

lim
n→∞

P

[

sc(L) > c
2n

n

]

= 1 (2)

for some constant c depending on p only. We explain at the end of the proof
why every choice for c is valid as long as c < H(p). To establish Equation 2,
we begin with a basic fact about conditional probabilities:

P

[

sc(L) > c
2n

n

]

≥
∑

m

(

1 − P

[

sc(L) ≤ c
2n

n

∣

∣

∣ |L| = m
])

P [|L| = m] , (3)

where m runs over any subset of {1, 2, . . . , |S|}. To estimate the probability

P

[

sc(L) ≤ c
2n

n

∣

∣

∣ |L| = m
]

,

9

we note first that, independent of p, all
(

|S|
m

)

languages containing m words are
equally probable because L is generated by a Bernoulli process. Since there
are g2(c

2n

n
) languages over a binary alphabet acceptable by deterministic finite

automata with at most g2

(

c2n

n

)

states,

P

[

sc(L) ≤ c
2n

n

∣

∣

∣ |L| = m
]

≤
g2

(

c2n

n

)

(

|S|
m

) . (4)

We now investigate the region where m is close to E[|L|] = p|S|, namely
(1 − d)E[|L|] ≤ m ≤ (1 + d)E[|L|] for some d. To this end, we choose a small
constant d = dc depending only on c (to be fixed later). For now, we require
only 0 < d < 1 and (1 + d)p < 1. Next, we derive a lower bound for the

binomial coefficients
(

|S|
m

)

occurring in Inequality 4 in the case (1 − d)p|S| ≤
m ≤ (1+d)p|S|. Set α = (1−d)p and β = (1+d)p. We assume that p ≥ 1

2
, that

is, α|S| is at least as close to |S|
2

as β|S|. For the other case we replace α with β

in all of the following computations. Then
(

|S|
m

)

≥
(

|S|
α|S|

)

for every m under
consideration. Asymptotic estimates for this binomial coefficient are known,
e.g., from Stirling’s formula one obtains:

lim
n→∞

log

(

|S|
α|S|

)

−
[

H(α)|S| − 1

2
log(2πα(1 − α)|S|)

]

= 0. (5)

Recall log g2(c2
n/n) < c(1 + 5

2n
)2n + n from the proof of Theorem 3; and thus

lim
n→∞

log g2(c2
n/n) − log

(

|S|
α|S|

)

< lim
n→∞

c(1 +
5

2n
)2n + n

−
[

H(α)2n − 1

2
(n + 1) − 1

2
log(2πα(1 − α))

]

= lim
n→∞

(c − H(α)) 2n.

The last line is obtained by pulling out the factor 2n of all terms and then
removing the o(1) inner terms. This limit tends to −∞ as long as c < H(α).
We conclude that the probability in Inequality 4 tends to zero as n grows.
As

(

|S|
m

)

≥
(

|S|
α|S|

)

for α|S| ≤ m ≤ β|S|, a similar fact holds for all m under
consideration. Thus for any constant δ > 0 holds

P

[

sc(L) ≤ c
2n

n

∣

∣

∣ |L| = m
]

< δ,

provided n is large enough. We plug this into Inequality 3 to obtain for every
constant δ > 0:

lim
n→∞

P

[

sc(L) > c
2n

n

]

> lim
n→∞

∑

m

(1 − δ)P [|L| = m] , (6)

10

where the index m ranges from (1−d)E[|L|] to (1+d)E[|L|]. We show next that
the sum

∑

m P [|L| = m] converges to 1 in the limit. The random variable |L|
is binomially distributed; so using Chernoff’s bound, we have

∑

m

P [|L| = m] = P

[∣

∣

∣

∣

∣

E[|L|] − |L|
E[|L|]

∣

∣

∣

∣

∣

≤ d

]

≥ 1 − 2 exp

(

pd 2

3

)−|S|
.

Since pd2

3
is a positive constant, exp(pd2

3
) > 1, this probability tends to 1 with

n → ∞. We may now plug this into Inequality 6 to find that for every δ > 0
holds limn→∞ P

[

sc(L) > c2n

n

]

> 1− δ, and thus the probability in Equation 2
indeed converges to 1.

Finally, we have to argue that c can be chosen freely as long as 0 < c < H(p).
Assume still p ≥ 1

2
for the moment. The function H(x) is a strictly increasing

function for x ∈ (0; 1
2
], with limx→0+ H(x) = 0 and H(1

2
) = 1. Thus for every

y ∈ (0; 1], there is a unique preimage x = H−1(y) with x ∈ (0; 1
2
], and under

this restriction, we may speak of H−1 as a function H−1 : (0; 1] 7→ (0; 1
2
]. Recall

that we have to choose the constant d = dc such that 0 < d < 1, (1 + d)p < 1,
and c < H(α) = H((1 + d)p), in other words 0 < d < 1 − p−1H−1(c). Such
a d can be found as long as 0 < c < H(p). For the case p < 1

2
, note that

H(β) = H(1 − β). We choose the constant dc such that c < H(1 − β), that
is 0 < d < p−1 (1 − H−1(c)) − 1. If c < H(p), then H−1(c) < p < 1

2
, and

the numerator in the above fraction is greater than the denominator. So we
can find a suitable d also in this case. The theorem now follows by applying
Markov’s Inequality on Equation 2: For all c < H(p) holds

lim
n→∞

E (sc(L))

c2n/n
≥ 1,

and so E (sc(L)) ≥ (H(p) − o(1)) 2n

n
. 2

The cases of particular interest are the cases p = 1
4

and p = 3
4
, since these

occur for the state complexities of the results for the union and intersection
operations on random finite languages in our setup, see Lemma 7. For H(1

2
) =

1 and H(1
4
) = H(3

4
) > 4

5
, the lower bound for the expected value almost

matches the a priori upper bound given in Theorem 2.

It is worth mentioning that a corresponding result for larger alphabets can
be proved along the lines of the above proof, namely that for |Σ| = k holds

E (sc(L)) ≥
(

H(p)
(k−1) log k

− o(1)
)

kn

n
: Most of this proof works as detailed above;

the main difference is that we have to use an inequality similar to Inequality 4,
but this time with the term gk

(

c kn

(k−1) log kn

)

on the right-hand side. Then one
uses the upper bound on this term derived in the proof of Theorem 3, together
with the estimates n log k ≤ |S| ≤ (n + 1) log k − log(k− 1), to prove that the
probability in the mentioned inequality tends to zero.

11

3.3 Unary Finite Languages

We turn to the case where Σ = {0} is a unary alphabet. The case where all
words are of equal length is arguably not very interesting, so we consider the
subsets of {0}≤n next.

Lemma 10 Let L be a ({0}≤n, p)-distributed language with 0 < p < 1. Then

E(sc(L)) = n + 2 − p−1(1 − p) + p−1(1 − p)n+2.

PROOF. The state complexity is governed by the longest word in the lan-
guage. We have sc(L) = 1 if and only if L = ∅, and the probability of this
event equals (1−p)n+1; otherwise sc(L) = k if and only if k−2 is the length of
the longest word in L. The probability of the event “length of the longest word
in L equals k − 2” conditional on the event “L 6= ∅” equals p · (1 − p)n−k+2.
An easy observation is

P [longest word in L has length k − 2 | L 6= ∅] = p · (1 − p)n−k+2.

And for k > 1, we have P[sc(L) = k] = P[sc(L) = k | L 6= ∅]. Using the
geometric series formulae

∑n
k=0 qk = p−1(1−qn+1) and the identity

∑n
k=0 kqk =

−(n + 1)p−1qn+1 − p−2qn+2 + p−2q, and setting q = 1 − p, the expected value
computes as

E(sc(L)) = qn+1 +
n+2
∑

k=2

kpqn−k+2

= qn+1 + p(n + 2)
n
∑

k=0

qk − p
n
∑

k=0

kqk = n + 2 − p−1q + p−1qn+2.

This proves the stated claim. 2

Using Lemma 7, we obtain for the union of two ({0}≤n, 1
2
)-distributed lan-

guages over an unary alphabet an expected value very close to n + 5
3
, if n is

large; for the intersection it is close to n − 1, and for reversal and bounded
complement, that is, complement with respect to the set {0}≤n, it is the same
as the operand, i.e., close to n + 1.

12

4 Average Complexity of Nondeterministic Finite Automata

Now let us turn our attention to the nondeterministic state and transition com-
plexity of finite languages. For the unary case, observe that for all nonempty
finite languages, the nondeterministic state complexity is almost equal to the
deterministic one, except that we can remove the dead state, and for the empty
language it equals 1. Elementary computations with conditional expectations
then give, in the terminology of Lemma 10,

E(nsc(L)) = E(sc(L)) − 1 + (1 − p)n+1.

For the binary case, a result in the same spirit as Theorem 3 but now con-
cerning the size of nondeterministic finite automata was obtained in [13].

Lemma 11 (1) The number of languages over Σ acceptable by nondeter-
ministic finite automata with at most 1

2

√
2n states is bounded above by√

2n+2n = o(|Bn|) = o(|Fn|).
(2) The number of languages over Σ acceptable by nondeterministic finite au-

tomata with at most 2n

20n
transitions is bounded above by

√
22n = o(|Bn|) =

o(|Fn|).

The descriptional complexity in the nondeterministic model cannot exceed the
corresponding one in the deterministic model. And in the latter model, tran-
sition complexity is linear in state complexity. Thus, we have a preliminary
worst-case estimate of O(2n

n
) for both nondeterministic state and transition

complexity. By Lemma 11, this is essentially optimal for the number of tran-
sitions, but it can be improved for the number of states:

Lemma 12 Assume L ⊆ Σ≤n. Then nsc(L) < 3√
2

√
2n.

PROOF. Let ℓ = ⌊(n − 1)/2⌋ and m = ⌈(n − 1)/2⌉. We construct a non-
deterministic finite automaton A = (Q, {0, 1}, δ, pλ, F), where Q = P1 ∪ P2

(the union is disjoint) with P1 = { pw | w ∈ {0, 1}∗ and |w| ≤ ℓ } and P2 =
{ qw | w ∈ {0, 1}∗ and |w| ≤ m }, the set F = {qλ} ∪ { pλ | λ ∈ L }, and the
transition function is specified as follows:

(1) For all pw ∈ P1 and a ∈ {0, 1}, the set δ(pw, a) contains the element pwa.
(2) For all w ∈ L \ {λ}, if w = xay is the unique decomposition, where

|x| = ⌊(|w| − 1)/2⌋, a is a single letter, and |y| = ⌈(|w| − 1)/2⌉, then let
δ(px, a) contain the element qy.

(3) For all qw ∈ P2 \ {qλ} and a ∈ {0, 1}, the set δ(paw, a) contains the
element qw.

13

This completes the construction of the nondeterministic finite automaton. It
is easy to see that for the number of states in A, we have

|P1| + |P2| = 2ℓ+1 − 1 + 2m+1 − 1 <
3√
2

√
2n.

It remains to show that L(A) = L. Note that every state pw in P1 is only
reachable by the word w from the initial state pλ, and that for every state qw

in P2 there is only one path leading to the final state qλ. So every transition
leading from P1 to P2 leads to the acceptance of exactly one word in L. This
proves the stated claim. 2

Lemma 11 tells us that the above construction for finding a compact non-
deterministic finite automaton works pretty well on the average, if we wish
to keep the number of states as small as possible. Also, this construction is
almost optimal in the worst case, as witnessed by the language family Ak

in [11, Example 3]. The drawback in this construction is that the number of
transitions is at least equal to the cardinality of the accepted language. Now
we have determined the growth order of the average descriptional complexity
in the families Fn and Bn for three descriptional measures: deterministic state
complexity, and nondeterministic state and transition complexity.

Theorem 13 Let L be a (S, 1
2
)-distributed language with S = Σ≤n or S = Σn.

Then for every δ > 0, language L has all of the following properties with
probability at least 1 − δ, provided n is large enough:

1

2
·
√

2n < nsc(L) <
3√
2
·
√

2n,

1

20
· 2n

n
< ntc(L) <

2n+4

n
,

and
2n−1

n
< sc(L) <

2n+3

n
.

2

As an application of the probabilistic method used here, we present a worst-
case comparison of nondeterministic state complexity versus nondeterministic
transition complexity. In [1], a heuristics for reducing the number of states
of nondeterministic finite automata accepting languages in Bn is proposed.
It was observed that, although the heuristics performed well in reducing the
number of states in the given automata, it occasionally blew up the number
of transitions:

“It seems that the number of states is always used to measure the size of
automata. [Our] experimentations show that it would be better to also take

14

into account the number of transitions [. . .]. This is clearly important from
a practical point of view, but perhaps also from a theoretical one [. . .].”

We substantiate this empirical study by proving that there can be a superlinear
lower bound on nondeterministic transition complexity when expressed as a
function of nondeterministic state complexity. And in fact many languages
that can be accepted by nondeterministic finite automata with a given number
of states exhibit this behavior.

We can extend the model of nondeterministic finite automata by allowing ε-
transitions. In the latter model, the nondeterministic transition complexity
will be denoted ntcε(L). By definition, ntcε(L) ≤ ntc(L), but there is an
infinite family of languages Kn such that ntcε(Kn) ∈ O(n), while ntc(Kn) =
Ω(n(log n)k), for all k > 0, holds, see [15]. To prepare the next result, we derive
a counting argument similar to Lemma 11 first—which gives at the same time
an improved lower bound:

Lemma 14 For n ≥ 8, the number of languages over Σ that can be accepted
by nondeterministic finite automata with ε-transitions having at most 2n

4n
tran-

sitions is bounded above by
√

|Bn| = o(|Bn|) = o(|Fn|).

PROOF. For the proof it will be more convenient to bound the number of
languages acceptable by nondeterministic finite automata with ε-transitions
having at most 2n

4n
“edges” instead—by an edge, we mean an edge in the under-

lying simple directed graph of the automaton. As an edge can be labeled with
more than one alphabet symbol, there are always at least as many transitions
in the automaton as edges in the underlying graph.

Combining the arguments in [8,13], there are at most 7
(

s2

t

)

(2s − 1) + 1 lan-
guages over a binary alphabet that can be accepted by nondeterministic finite
automata with ε-transitions with exactly s states and exactly t edges: there
are

(

s2

t

)

ways to place t edges between pairs of states, and every such edge may

be labeled with one of the 7 nonempty subsets of {ε, a, b}. Either the initial
state q0 is accepting or not, and we can assume that the other accepting states
are labeled q1, q2, . . . , qk with 0 ≤ k ≤ s − 1. If no final state is selected, only
one language can be accepted, namely the empty language.

If we bound only the number of edges from above, observe that the number of
states needed can exceed the number of edges needed by at most 1. Overmore,
if a language can be accepted by a nondeterministic finite automaton with at
most t edges, then it can also be accepted by an automaton with exactly
t edges and exactly t + 1 states: In case exactly t edges are needed in order
to accept the language, we can just add as many additional useless states as
needed to the automaton without changing the accepted language. Otherwise,

15

the language can be accepted by an automaton with exactly t′ < t edges and
t′ + 1 states. We then add as many useless (nonaccepting) states as needed,
and for each such state we extend the transition function by adding an edge
leading from the start state to the newly added useless state, in order to get a
total number of t edges and t+1 states without altering the accepted language.
Thus we obtain an upper bound of 7(2t+1)

(

(t+1)2

t

)

+1 on the number of these

languages. Using
(

m
k

)

< mk/k! and log k! > k log k − 3
2
k, we find that

log

(

(t + 1)2

t

)

< 2t log(t + 1) − t log t +
3

2
t < 2t log t,

for t ≥ 8, and the number of languages under consideration is at most 7(2t +
1)t2t + 1. Setting t = 2n−2/n with n ≥ 8, we find that this number is smaller
than

7(2n−1/n + 1)

(4n)2n−1/n
22n−1

+ 1 < 22n−1

.

This proves the stated claim. 2

Now we are ready for the last theorem.

Theorem 15 For every k ≥ 34, there is a set T of finite languages over Σ
such that for every L ∈ T holds

nsc(L) < k, but ntcε(L) >
k2

c · log k
,

for some constant c ≤ 72. Moreover the size of T is of order 2Ω(k2).

PROOF. Let n be the unique integer such that 3√
2

√
2n < k ≤ 3 ·

√
2n. Then

by our choice of n holds log k > 1
2
n + log 3√

2
> 1

2
n and k2 ≤ 9 · 2n.

By Lemma 14, there are more than |Bn|−
√

(|Bn|) languages in Bn that cannot
be accepted by nondeterministic finite automata with ε-transitions having at
most 2n

4n
transitions, provided n ≥ 8. The lemma is applicable for k ≥ 34, since

3√
2

√
28 < 34. These languages form the set T . Furthermore,

|T | > 22n−1 ≥ 2k2/9−1 = 2Ω(k2),

for k ≥ 34. On the other hand, for every L ∈ T holds nsc(L) < 3√
2

√
2n < k by

Lemma 12. But any nondeterministic finite automaton accepting a language
L ∈ T has more than 2n

4n
transitions, even if ε-transitions are allowed, and

k2

log k
< 9·2n

1/2n
= 72 · 2n

4n
, which completes the proof. 2

16

In [10], it is reported that a simlar result for ε-free nondeterministic finite
automata was found independently by J. Kari. We also note that a lower
bound for the gap between nondeterministic state and transition complexity
was obtained in [10] by more constructive means. There an explicitly defined

family of languages is given where nsc(Ln) = Θ(n), but ntc(Ln) = Θ(n
3

2).

5 Discussion

We investigated the average descriptional complexity of finite automata for
two natural families of finite languages over a unary, binary and k-letter al-
phabet: In the first family, all words have the same length, and in the second
family, words of length up to a given bound are allowed. These language fam-
ilies were already subject to worst-case analysis of the deterministic model
in [3,6], and lower bounds on the average for the nondeterministic model were
obtained in [13].

We tried to complete the picture by providing an average-case analysis with
asymptotically tight results, which are in all cases close to the worst-case
upper bounds. Namely, the average deterministic state complexity in both
families is Θ(kn

n
), for a fixed k-letter alphabet, and Θ(n) for unary alpha-

bet, where n is the maximal allowed word length. We introduced a stochastic
process allowing us to investigate the average effect on state complexity of
various language operations, too. We found that the average state complexity
cannot essentially increase compared to that of the operands, and also that it
cannot decrease by more than a constant factor, the size of the constant de-
pending only on the operation. In the case of unary finite languages, we found
that the average state complexity of the result of an operation is for some
operations indeed smaller than that of the operands. So there is a notable
difference to worst-case results: There the outcome of union and intersection
can have complexity quadratic in the size of each operand; and the reversal
operation can even cause an exponential blow-up in the number of states.
Then we turned to the nondeterministic model. The nondeterministic state
complexity is in Θ(

√
2n) on the average over a binary alphabet, suggesting

superiority over the deterministic model; however the number of transitions
needed is again Θ(2n

n
) in almost all cases; and this still holds in the case where

ε-transitions are allowed. One can deduce that there are many languages for
which the gap between nondeterministic state and transition complexities can
be almost quadratic.

Acknowledgements Thanks to Felix Fischer for some useful discussion and
to the anonymous referees for valuable suggestions and corrections.

17

References

[1] J. Amilhastre, P. Janssen, and M.-C. Vilarem. FA minimisation heuristics for a
class of finite languages. In O. Boldt and H. Jürgensen, editors, Proceedings of
the 4th International Workshop on Implementation of Automata, number 2214
in LNCS, pages 1–12, Potsdam, Germany, July 1999. Springer.

[2] F. Bassino and C. Nicaud. Enumeration and random generation of accessible
automata. Enumeration and random generation of accessible automata.
Theoretical Computer Science, to appear.

[3] C. Câmpeanu and W. H. Ho. The maximum state complexity for finite
languages. Journal of Automata, Languages and Combinatorics, 9(2–3):189–
202, September 2004.

[4] C. Câmpeanu, K. Čulik II, K. Salomaa, and S. Yu. State complexity of
basic operations on finite languages. In O. Boldt and H. Jürgensen, editors,
Proceedings of the 4th International Workshop on Implementing Automata,
number 2214 in LNCS, pages 60–70, Potsdam, Germany, July 1999. Springer.

[5] J.-M. Champarnaud and T. Paranthoën. Random generation of DFAs.
Theoretical Computer Science, 330(2):221–235, 2005.

[6] J.-M. Champarnaud and J.-E. Pin. A maxmin problem on finite automata.
Discrete Applied Mathematics, 23:91–96, 1989.

[7] M. Domaratzki. State complexity of proportional removals. Journal of
Automata, Languages and Combinatorics, 7(4):455–468, 2002.

[8] M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and
Combinatorics, 7(4):469–486, 2002.

[9] M. Domaratzki. Enumeration of formal languages. Bulletin of the EATCS,
89:117-133, 2006.

[10] M. Domaratzki and K. Salomaa. Lower bounds for the transition complexity
of NFAs. In R. Královič and P. Urzycyn, editors, Proceedings of the 31st
Conference on Mathematical Foundations of Computer Science, number 4162
in LNCS, pages 315–326, Stará Lesná, Slovakia, August–September 2006.
Springer.

[11] I. Glaister and J. Shallit. A lower bound technique for the size of
nondeterministic finite automata. Information Processing Letters, 59:75–77,
1996.

[12] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley, 1988.

[13] G. Gramlich and G. Schnitger. Minimizing NFA’s and regular expressions. In
V. Diekert and B. Durand, editors, Proceedings of the 22nd Annual Symposium

18

on Theoretical Aspects of Computer Science, number 3404 in LNCS, pages 399–
411, Stuttgart, Germany, February 2005. Springer.

[14] M. Holzer and M. Kutrib. State complexity of basic operations on
nondeterministic finite automata. In J.-M. Champarnaud and D. Maurel,
editors, Proceedings of the 7th International Conference Implementation and
Application of Automata, number 2608 in LNCS, pages 148–157, Tours, France,
July 2003. Springer.

[15] Juraj Hromkovič and Georg Schnitger. NFAs with and without ε-transitions.
In L. Caires, G. G. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors,
Proceedings of the 32nd International Colloquium Automata, Languages and
Programming, number 3580 in LNCS, pages 385–396, Lisbon, Portugal, July
2005. Springer.

[16] C. Nicaud. Average state complexity of operations on unary automata. In
M. Kutylowski, L. Pacholski, and T. Wierzbicki, editors, Proceedings of the 24th
Conference on Mathematical Foundations of Computer Science, number 1672
in LNCS, pages 231–240, Szklarska Poreba, Poland, September 1999. Springer.

[17] K. Salomaa and S. Yu. NFA to DFA transformation for finite language over
arbitrary alphabets. Journal of Automata, Languages and Combinatorics,
2(3):177–186, 1997.

[18] T. Schickinger and A. Steger. Diskrete Strukturen II (in German). Springer,
2001.

[19] S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages, volume 1, pages 41–110. Springer, 1997.

[20] S. Yu, Q. Zhuang, and K. Salomaa. The state complexity of some basic
operations on regular languages. Theoretical Computer Science, 125:315–328,
1994.

19

