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1 The Strong Visible Robber Game: Basic Properties

The cops and strong visible robber game, defined in [3], is played according to
the following rules:

Initially, the cops occupy some set of X ⊆ V vertices, with |X| ≤ k, and
the robber is placed on some vertex v ∈ V − X. At any time, some of the cops
can reside outside the graph, say, in a helicopter. In each round, the cop player
chooses the next location X ′ ⊆ V for the cops. The stationary cops in X ∩ X ′

remain in their positions, while the others go to the helicopter and fly to their
new position. During this, the robber player, knowing the cops’ next position X ′

from wiretapping the police radio, can run at great speed to any new position
v′, provided there is both a (possibly empty) directed path from v to v′, and a
(possibly empty) directed path back from v′ to v in G − (X ∩ X ′), that is, he
has to avoid to run into a stationary cop, and to run along a path in and to stay
in the same strongly connected component of the remaining graph induced by
the non-blocked vertices. Afterwards, the helicopter lands the cops at their new
positions, and the next round starts, with X ′ and v′ taking over the roles of X
and v, respectively.

The cop player wins the game if eventually a cop lands on the robber’s
current position or robber cannot move any more, and the robber player wins if
the robber can escape indefinitely.

Instead of letting the robber choose a single vertex in each turn, we prefer to
think of the robber’s positions as strongly connected components of G, and of
the robber choosing in each turn a strongly connected component R′ in G−X ′

such that R and R′ are in the same strongly connected subset of G − X ∩ X ′.

Formally, we can define a play of the above game as a finite or infinite word
over the set of game positions π = (X0, R0)(X1, R1) . . . with X0 = ∅, R0 = V ,
and for each i ≥ 1 holds Xi, Ri ⊆ V , and Ri+1 is a strongly connected component
of G−Xi+1 such that Ri and Ri+1 are in the same strongly connected component
of G − (X ∩ X ′). Furthermore, if π is finite, then the last game position in π is
(X, ∅) for some X ⊆ V . For reasoning about suffixes of plays, it is convenient to
allow arbitrary starting positions (X0, R0) in the definition above. Then we say
that π is a play from position (X0, R0). The cop player wins the play π if it is
finite and ends with position (X, ∅) for some X ⊆ V . The robber player wins the
play if it is infinite and contains no positions of the form (X, ∅) with X ⊆ V .



A strategy σ for k cops is a function that, for each given game position (X,R),
returns the next position X ′ for the cops, and we require that each position holds
|σ(X,R)| ≤ k. A game position (X,R) is reachable (w.r.t. strategy σ) if there
is a play consistent with σ in which (X,R) occurs. A play π is consistent with
a strategy σ if for each i ≥ 0 holds Xi+1 = σ(Xi, Ri). We say that σ is a k-
cop winning strategy if all plays consistent with σ are winning for the cops. A
strategy σ is robber-monotone if for all plays consistent with σ holds Ri+1 ⊆ Ri,
i.e. the set of robber positions is a monotonically decreasing sequence, and σ is
cop-monotone if the cops can never revisit a vertex once it has been vacated,
that is, for all i ≤ j ≤ k holds Xi ∩ Xk ⊆ Xj in all plays consistent with σ.

It is known that every cop-monotone strategy is robber-monotone, but that
the converse is not true in general [3]. Still, any strategy for k cops can be
simulated by a winning strategy that uses only O(k2) cops [2].

Lemma 1. Assume G is a partial directed union of two graphs G1 and G2. Then
dw(G) = max{dw(G1), dw(G2)}.

Proof. We have dw(G) ≥ dw(G[U ]) for every subgraph induced by a subset U
of the vertex set of G. Since G1 and G2 are induced subgraphs of G, dw(G) ≤
max{dw(G1), dw(G2)}.

For the other direction, assume the k + 1 cops have winning strategies π1

and π2 for both G1 and G2. Then they can combine these to form a winning
strategy π for G as follows: They place no cop at all on the graph in the first
move, and wait whether the robber’s initial position is on G1 or G2; the robber
cannot choose a strongly connected subset of V (G) that intersects with both
subgraphs, as this would contradict the fact that G is a partial directed union
of G1 and G2. If the robber chooses a vertex in G1, he cannot enter a vertex in
G2 since he always to remain in the same strongly connected component of G,
which is either entirely in G1 or entirely in G2. So the cops can from now on
play according to the strategy π1. A symmetric argument applies if the robber’s
initial position is a vertex in G2. ⊓⊔

2 A separator theorem for D-width

The notion of D-width was introduced in [5] as an attempt to a more natural
generalization of (undirected) treewidth to directed graphs than the one origi-
nally proposed in [3]. Symmetric graphs of small undirected treewidth enjoy the
property that they admit small separators [4]. This allows for efficient divide-
and-conquer algorithms for many problems on graphs of bounded treewidth that
are intractable (e.g. NP-complete) for general graphs, see e.g. [1]. The goal of
this section is to show that digraphs of bounded D-width have small weak sep-
arators, the latter being a generalization of separators to directed graphs.

Definition 2. A D-Decomposition of a directed graph G is an undirected tree T
with V (T ) = I, together with a family of bags {Xi|i ∈ I}, where every bag Xi is a
subset of V (G), with the property that for every strong subset S in G holds: (D1)



The set of vertices whose bags Xi intersect with S, formally { i | Xi ∩ S 6= ∅ }
induce a (connected) subtree TS of G. (D2) S intersects with at least one Xi such
that Xi is the bag of some vertex i in V (T ). The width of the D-decomposition
is the minimum w such that each bag contains at most w + 1 digraph vertices.

Remark. We note that the original definition of D-width from [5] is a bit more
strict. With notation as above, the original condition (D1) imposes the condition
that the subgraph induced by the edge set to {{i, j} ∈ E(T ) | Xi ∩ Xj ∩ S 6= ∅}
remains connected. But the strong correspondence of D-decompositions and the
strategy DAGs for cop-monotone strategies established in [2] does in fact only
hold for the definition used here. (The problematic situation occurs when in the
cops and robber game two consecutive locations X and X ′ of the cop player are
disjoint. In this case the additional restriction gives a disconnected subgraph for
the more restricted definition.)

Suppose (T, {Xi|i ∈ I}) is a D-Decomposition for G.

Lemma 3. For strong subsets S,S′ of G with S′ ⊆ S, let TS and TS′ the subtrees
of T defined in (D1). Then TS′ is a subtree of TS.

Proof. By definition, the bag Xi of every tree vertex i in TS′ intersects with S′

and hence also with S. Thus i is also a vertex of the subtree TS . ⊓⊔

For each vertex i in I of the tree T , the connected components of T − i are
called the branches at i. The branches at i are in natural correspondence with
the edges of T incident with i.

Lemma 4. For i ∈ I and v ∈ V (G), either v is in the bag Xi of i, or there is a
unique branch of T at i which contains all j in I with v in Xj.

If v /∈ Xi, the existence of at least one such branch follows from (D2), and its
uniqueness from (D1). For v /∈ Xi, let Ti(v) denote this branch.

Lemma 5. If there is a strong subset S in V (G) with Xi ∩ S = ∅, then there is
a unique branch Ti(S) such that for all s ∈ S holds Ti(s) = Ti(S).

Proof. Assuming S is a strong subset of V (G) that does not intersect with Xi,
it suffices to show that for each pair of vertices v, w in S holds Ti(v) = Ti(w):
This gives the desired unique branch Ti(S) = Ti(v).

By (D1), the bags intersecting with S form induce a subtree TS of T , and
by (D2), this subtree is nonempty. Since Xi does not intersect with S, i is not a
vertex of TS , but by Lemma 3, all vertices whose bags contain v or v′ are in TS .
In other words, TS forms a subtree of T − i and both v and v′ are in the same
branch at i.

Definition 6. For a digraph G, let X ⊆ V (G). Two vertices v, v′ ∈ V (G) \ X
are weakly separated in G by a set of vertices X ⊆ V (G) if every strong subset
S in G containing both v and v′ intersects with X. In a similar manner, two
sets of vertices Y,Z ⊆ V (G) \ X of vertices in G are weakly separated by X if
every strong subset S in G intersecting with both Y and Z intersects with X.



One would expect from any definition of weak separators that if Y and Z
are separated by X, then Y and Z are disjoint. This is indeed the case: Assume
v ∈ Y ∩ Z. Then {v} is a strong subset not intersecting with Y and Z, but not
with X, contradiction.

Let B be a branch at vertex i. Define the crop load of B, as the set of digraph
vertices v ∈ V (G)\Xi such that Ti(v) = B. By Lemma 5, being in the crop load
of the same branch at i induces an equivalence relation on V (G) \ Xi.

Lemma 7. Let B and B′ be two distinct branches at i. Then the crop loads of
B and B′ are pairwise disjoint. Furthermore, the crop load of each branch at i
equals the union of zero or more strong components of G − Xi.

Proof. The counterpositive of Lemma 5 in terms of weak separators states that
if v, v′ /∈ Xi and Ti(v) 6= Ti(v

′) then v and v′ are weakly separated in G by Xi.
Thus if v is in the crop load of B and v′ is in the crop load of B′, then v 6= v′,
and they belong to different strongly connected components of G \ Xi. Next,
assume Ti(v) = B and another digraph vertex v′ belongs to the same strong
component C in G\Xi. Since C is a strong subset in G not intersecting with Xi,
again by Lemma 5, this implies that Ti(v

′) = B. ⊓⊔

Lemma 8. Let e = {j, j′} be a tree edge of T , and let N,N ′ be the tree vertex
sets of the two components of T − e. Let X denote the set of digraph vertices
(Xj ∩ Xj′). Then Xj ∩ Xj′ weakly separates the digraph vertex sets

⋃

i∈N Xi \
(Xj ∩ Xj′) and

⋃

i∈N ′ Xi \ (Xj ∩ Xj′) in G.

Proof. We onsider two cases: in the first case Xj ⊆ Xj′ or Xj′ ⊆ Xj . Then
Lemma 7 applies for the branches at j or for the branches at j′, and we are
finished.

In the case Xj 6= Xj′ , let Y =
⋃

i∈N Xi \ (Xj ∩ Xj′) and Z =
⋃

i∈N ′ Xi \
(Xj ∩Xj′). We root the D-Decomposition at j and play the monotone cops and
robbers game with Xj being the cops’ first position according to the monotone
winning strategy that corresponds to the D-Decomposition rooted at j (see [2]
for details). We place the robber at the initial vertex v in G such that the cops’
response according to the strategy is to place the cops at Xj′ . Then the robber
sees the cops approaching their next position Xj′ in their helicopters, and has
to choose to reside in a strong subset of V (G) \ X = Y ∪ Z in the non-blocked
induced subgraph of G. Since the cops play according to a monotone strategy,
placing the robber at a vertex in Xj \ Xj′ will let the robber win. However, the
cops’ strategy is winning, and thus the move must be forbidden for the robber
because every strong subset of Y ∪ Z has an empty intersection with Xj . A
symmetric argument applies if we root the D-Decomposition at Xj′ , hence no
strong subset of V (G) \ X intersects with Xj ∪ Xj′ . Since also every singleton
subset of the former set is a strong subset of V (G) \ X = Y ∪ Z has empty
intersection with Xj ∪ Xj′ , (Y ∪ Z) ∩ (Xj ∪ Xj′) = ∅.

In particular, this implies that the sets Y and Z are subsets of the crop loads
of two branches B and B′ at j. But V (B) ⊆ N and V (B′) ⊆ N ′, and N and



N ′ partition the set of tree vertices I, thus the two branches are distinct. By
Lemma 7, this implies that Y ∩ Z = ∅.

For the sake of contradiction, assume now there is a strong subset S in
G − X containing both some y ∈ Y and some z ∈ Z which does not intersect
with X = Xj ∩Xj′ . As explained above, no strong subset of V (G)\X intersects
with Xj ∪ Xj′ . Hence S ⊆ Y ∪ Z, and since Y and Z are disjoint, the assumed
set S containing both x and y cannot exist. ⊓⊔

Theorem 9 (Directed Separator Theorem). Let G be a digraph and assume
(T, {Xi|i ∈ I}) is a D-Decomposition of width at most w + 1 for G. Then for
each Q ⊆ V (G), there exists a set of digraph vertices X with |X| ≤ w + 1 such
that every strong component of G−X has at most 1

2
|Q \X| vertices that are in

Q.

Proof. We distinguish two cases.
Case 1. Some i ∈ I has the property that for each branch B of T at i,

|{ q ∈ Q \ Xi | Ti(q) = B }| ≤
1

2
|Q \ Xi|.

In this case, the bag Xi is a valid choice for X that satisfies the statement
of the theorem: We have |Xi| ≤ w + 1 and by Lemma 5, each pair of digraph
vertices v, v′ such that Ti(v) 6= Ti(v

′) is weakly separated by Xi.
Case 2. For each i ∈ I there is a branch Bi of T at i, such that

|{ q ∈ Q \ Xi | Ti(q) = Bi }| >
1

2
|Q \ Xi|.

Intuitively, in this case, for each bag Xi there is a branch at i that is “too
heavy” for Xi to be a weak separator with the required properties. Now the idea
is to use a set Xj ∩ X ′

j as weak separator, as provided by Lemma 8. We do this
in a way such that if there is still a too heavy branch, then it is already almost
a good branch, and we can remedy this by adding vertices from, say Xj , to the
weak separator.

For i ∈ I, let ei be the edge of T incident with i and with some vertex of
Bi. Since T has fewer edges than vertices, by the pigeon-hole principle, there
exist distinct vertices j, j′ ∈ I such that ej = ej′ . Then {j, j′} is an edge in T ,
j′ belongs to the branch Bj , and j belongs to the branch Bj′ . We now prepare
to apply Lemma 8: Let N and N ′ be the vertex sets of Bj′ and Bj , respectively.
Then N and N ′ are the vertex sets of the two components of the forest T−{j, j′}.
Let Y =

⋃

i∈N Xi \ (Xj ∩Xj′) and Z =
⋃

i∈N ′ Xi \ (Xj ∩Xj′). The set Xj ∩Xj′

might be a candidate for a separator that satisfies the required conditions on the
size of the strong components. Let’s see.

Without loss of generality, we assume that Y has more elements in Q than
Z, that is

|Y ∩ Q| ≥ |Z ∩ Q|. (1)

Recall that we assumed above that the branch Bj is too heavy for Xj being a
separator, that is |{ q ∈ Q − Xj | Tj(q) = Bj }| > 1

2
|Q \ Xj |. Since N ′ is the



vertex set of the branch Bj and { q ∈ Q − Xj | Tj(q) = Bj } = Z ∩ Q, we have

|Z ∩ Q| >
1

2
|Q \ Xj |. (2)

By Lemmata 7 and 8, Y and Z partition the vertex set of G− (Xj ∩Xj′). Since
Xj ⊆ Y , we have

Q \ Xj = (Z ∩ Q) ∪ ((Y \ Xj) ∩ Q),

and the union on the right-hand side is disjoint. Putting this into Inequality (2),
we get

|Q \ Xj | = |Z ∩ Q|
︸ ︷︷ ︸

> 1

2
|Q\Xj |

+|(Y \ Xj) ∩ Q|

and thus
|(Y \ Xj) ∩ Q| < |Z ∩ Q|.

By Equations (1) and (2), we can draw a number of elements in Xj out of Y
such that Equation (1) becomes equality: There exists U ⊆ Xj \ (Xj ∩Xj′) such
that

|(Y \ U) ∩ Q| = |Z ∩ Q|. (3)

Since Y and Z partition the set of digraph vertices in G − (Xj ∩ Xj′), the two
sets Y \ U and Z partition the set V (G) \ ((Xj ∩ Xj′) ∪ U). Intersecting both
former sets with Q, we get a partition of Q \ ((Xj ∩Xj′)∪U), by Equation (3),
this partition is exactly balanced:

|(Y \ U) ∩ Q| = |Z ∩ Q| =
1

2
|Q \ ((Xj ∩ Xj′) ∪ U)| (4)

Now let X = (Xj ∩ Xj′) ∪ U . Since X contains the set (Xj ∩ Xj′), Lemma 8
tells us that X weakly separates Y and Z and hence also every pair of respective
subsets. Since every strong subset in G − X is either a subset of Y \ U or of
Z, Equation (4) tells us that X also satisfies the balancing condition in the
statement of the theorem. Finally, since U ⊆ Xj , we have X ⊆ Xj and therefore
|X| ≤ w + 1 holds. ⊓⊔

Lemma 10 (Clique Containment Lemma). If G has a complete symmet-
ric subgraph Kr of cardinality r, then each D-decomposition for G has a bag
containing all vertices of Kr.

Proof. Clear by the alternative characterization by strategy DAGs of cops and
robbers games: Assume in every reachable game position there is one vertex in
Kr that is not occupied by the cops. This gives immediately an escape strategy
for the robber on Kr, and hence on G.

Lemma 11 (Biclique Containment Lemma). If G has a symmetric biclique
Kr,s as subgraph, Kr,s = (A⊎B,A×B∪B×A), with |A| = r and |B| = s, then
then each tree decomposition for G has a bag containing all vertices of A or a
bag containing all vertices of B.

Proof. Similar to above: If in each vertex of the corresponding strategy dag,
there is a free position in set A and a free position in set B, then the robber
player can alternately move between the sets A and B and escape indefinitely.
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